Align with mainline BSP and fix relevant bugs:
1. Align with SPI module naming
(1) Remove SPI5
(2) Degrade QSPI0 to SPI4 so that it can use for standard SPI
2. Fix some code lacking GPIO H
3. Implement __PC(...) by following BSP instead of with MBED_CALLER_ADDR()
4. Add SCU_IRQHandler(). Change printf(...) with interrupt-safe error(...)
5. Other minor alignment change
1. Re-organize to make clear for all targets/toolchains support in single startup file
2. Inline assembly syntax is limited, esp. on IAR. Try paving the way for accessing external symbols still in inline assembly instead of re-write in assembly.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST. )
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST.)
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST.)
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST.)
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST.)
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST. )
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to __vector_handlers to fix ARMC6 build with
the "-flto" flag.
(Error: L6236E: No section matches selector - no section to be FIRST/LAST. )
This attribute, attached to a function/variable, means that code must be emitted
for the function even if it appears that the function is not referenced.
Add a "used" attribute to Reset_Handler_Cascade to fix GCC build with
the "-flto" flag.
This attribute, attached to a function, means that code must be emitted
for the function even if it appears that the function is not referenced.
1. Enable IAR on non-secure targets
2. Disable IAR on secure targets because:
(1) IAR toolchain bug: As of IAR 8.32, cmse_nonsecure_caller() is not always inlined.
(2) TFM hasn't supported IAR yet.
On M2351, some spaces like SYS/CLK are hard-wired to secure and cannot change.
To access these spaces from non-secure world, we must provide platform-specific NSC
functions. With TFM introduced, we must synchronize NSC calls into TFM to keep TFM
in sync instead of straight NSC calls. To achieve this goal, we go with the following
approach:
1. Like PSA APIs, enforce locked entry through tfm_ns_lock_dispatch().
2. Run platform-specific secure functions in default secure partition, in which SYS/CLK
spaces have been configured to be accessible.
On IAR, configure heap to 1KiB at a minimum and expandable, dependent on available SRAM. This requires IAR 8.x.
Support targets:
- NUMAKER_PFM_NUC472 w/ and w/o XRAM
- NUMAKER_PFM_M453
- NUMAKER_PFM_M487/NUMAKER_IOT_M487
- NUMAKER_IOT_M263A
- NUMAKER_M252KG
At IAR linking, the default method of 'initialize by copy' is 'auto', which will estimate
different packing algorithms, including complex 'lz77', for smallest memory footprint. But
the algorithm itself can consume some SRAM and cause OOM at linking time for NANO130, which
just has 16KiB SRAM. To avoid this error, always choose 'none' packing algorithm.
These targets below just support PRNG, not real TRNG. They cannot annouce TRNG.
- NUMAKER_PFM_NUC472
- NUMAKER_PFM_M487
- NUMAKER_IOT_M487
On targets without TRNG, to run mbedtls applications which require entropy source,
there are two alternatives to TRNG:
- Custom entropy source:
Define MBEDTLS_ENTROPY_HARDWARE_ALT and provide custom mbedtls_hardware_poll(...)
- NV seed:
1. Define MBEDTLS_ENTROPY_NV_SEED
2. Define MBEDTLS_PLATFORM_NV_SEED_READ_MACRO/MBEDTLS_PLATFORM_NV_SEED_WRITE_MACRO and provide custom mbedtls_nv_seed_read(...)/mbedtls_nv_seed_write(...).
3. Don't define MBEDTLS_PSA_INJECT_ENTROPY. Meet mbedtls_psa_inject_entropy(...) undefined and then provide custom one, which must be compatible with mbedtls_nv_seed_read(...)/mbedtls_nv_seed_write(...) above.
4. For development, simulating partial provision process, inject entropy seed via mbedtls_psa_inject_entropy(...) pre-main.
In this new memory partition, secure program is most simplified and non-secure program can make most use of memory for its large application like Pelion:
- Flash (512KiB in total): 64KiB for secure and 448KiB for nonsecure.
- SRAM (96KiB in total): 8KiB for secure and 88KiB for nonsecure.
Besides, to make secure program fit into 8KiB:
- Decrease boot stack size to 0x600 bytes
- Remove serial support
Reasons to remove TRNG support:
1. M252 just has 32KiB SRAM and cannot afford mbedtls application.
2. Implementing TRNG HAL with PRNG H/W has security concern.
Without free-up of peripheral pins, peripheral pins of the same peripheral may
share by multiple ports after port iteration, and this peripheral may fail with
pin interference.
In Nuvoton, only new-design chips support GPIO input pull-high/pull-low modes.
Targets not supporting this feature are listed below:
- NUMAKER_PFM_NANO130
- NUMAKER_PFM_NUC472
- NUMAKER_PFM_M453
Fix logic error on replying NACK at the end of transfer.
This is also to fix FPGA CI test mbed_hal_fpga_ci_test_shield-i2c/
i2c - test single byte read i2c API.
Better IP initialization sequence:
1. Configure IP pins
2. Select IP clock source and then enable it
3. Reset the IP (SYS_ResetModule)
NOTE1: IP reset takes effect regardless of IP clock. So it doesn't matter if
IP clock enable is before IP reset.
NOTE2: Non-configured pins may disturb IP's state, so IP pinout first and then
IP reset.
NOTE3: IP reset at the end of IP initialization sequence can cover unexpected
situation.
Without free-up of peripheral pins, peripheral pins of the same peripheral may
share by multiple ports after port iteration, and this peripheral may fail with
pin interference.
In Nuvoton, only new-design chips support GPIO input pull-high/pull-low modes.
Targets not supporting this feature are listed below:
- NUMAKER_PFM_NANO130
- NUMAKER_PFM_NUC472
- NUMAKER_PFM_M453
Fix logic error on replying NACK at the end of transfer.
This is also to fix FPGA CI test mbed_hal_fpga_ci_test_shield-i2c/
i2c - test single byte read i2c API.
Better IP initialization sequence:
1. Configure IP pins
2. Select IP clock source and then enable it
3. Reset the IP (SYS_ResetModule)
NOTE1: IP reset takes effect regardless of IP clock. So it doesn't matter if
IP clock enable is before IP reset.
NOTE2: Non-configured pins may disturb IP's state, so IP pinout first and then
IP reset.
NOTE3: IP reset at the end of IP initialization sequence can cover unexpected
situation.