TTS/utils/generic_utils.py

181 lines
6.1 KiB
Python
Raw Normal View History

2018-01-22 09:48:59 +00:00
import os
import sys
import glob
import time
import shutil
import datetime
2018-01-22 16:20:20 +00:00
import json
2018-01-26 10:07:07 +00:00
import torch
2018-04-06 10:53:49 +00:00
import subprocess
2018-01-22 09:48:59 +00:00
import numpy as np
2018-02-26 13:33:54 +00:00
from collections import OrderedDict
2018-04-25 12:38:23 +00:00
from torch.autograd import Variable
2018-07-20 11:10:25 +00:00
from utils.text import text_to_sequence
2018-01-22 09:48:59 +00:00
2018-01-22 16:20:20 +00:00
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def load_config(config_path):
config = AttrDict()
config.update(json.load(open(config_path, "r")))
2018-04-03 10:24:57 +00:00
return config
2018-01-22 16:20:20 +00:00
2018-04-06 10:53:49 +00:00
def get_commit_hash():
"""https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script"""
2018-04-06 10:55:44 +00:00
try:
2018-08-02 14:34:17 +00:00
subprocess.check_output(['git', 'diff-index', '--quiet',
'HEAD']) # Verify client is clean
2018-04-06 10:55:44 +00:00
except:
2018-08-02 14:34:17 +00:00
raise RuntimeError(
" !! Commit before training to get the commit hash.")
commit = subprocess.check_output(['git', 'rev-parse', '--short',
'HEAD']).decode().strip()
2018-04-06 10:53:49 +00:00
print(' > Git Hash: {}'.format(commit))
return commit
2018-05-11 10:49:55 +00:00
def create_experiment_folder(root_path, model_name, debug):
2018-01-22 09:48:59 +00:00
""" Create a folder with the current date and time """
2018-07-13 13:24:50 +00:00
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p")
2018-05-11 10:49:55 +00:00
if debug:
commit_hash = 'debug'
else:
2018-05-11 10:49:55 +00:00
commit_hash = get_commit_hash()
2018-08-02 14:34:17 +00:00
output_folder = os.path.join(
root_path, date_str + '-' + model_name + '-' + commit_hash)
2018-01-22 09:48:59 +00:00
os.makedirs(output_folder, exist_ok=True)
print(" > Experiment folder: {}".format(output_folder))
return output_folder
def remove_experiment_folder(experiment_path):
"""Check folder if there is a checkpoint, otherwise remove the folder"""
2018-08-02 14:34:17 +00:00
checkpoint_files = glob.glob(experiment_path + "/*.pth.tar")
2018-01-22 16:29:27 +00:00
if len(checkpoint_files) < 1:
2018-01-24 16:17:49 +00:00
if os.path.exists(experiment_path):
shutil.rmtree(experiment_path)
print(" ! Run is removed from {}".format(experiment_path))
2018-01-22 09:48:59 +00:00
else:
print(" ! Run is kept in {}".format(experiment_path))
def copy_config_file(config_file, path):
config_name = os.path.basename(config_file)
out_path = os.path.join(path, config_name)
shutil.copyfile(config_file, out_path)
def _trim_model_state_dict(state_dict):
r"""Remove 'module.' prefix from state dictionary. It is necessary as it
is loded for the next time by model.load_state(). Otherwise, it complains
about the torch.DataParallel()"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
2018-04-03 10:24:57 +00:00
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
2018-07-20 10:23:44 +00:00
def save_checkpoint(model, optimizer, optimizer_st, model_loss, out_path,
2018-02-13 09:45:52 +00:00
current_step, epoch):
2018-02-09 13:39:58 +00:00
checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(out_path, checkpoint_path)
2018-07-18 12:31:09 +00:00
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
new_state_dict = model.state_dict()
2018-08-02 14:34:17 +00:00
state = {
'model': new_state_dict,
'optimizer': optimizer.state_dict(),
'optimizer_st': optimizer_st.state_dict(),
'step': current_step,
'epoch': epoch,
'linear_loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y")
}
2018-02-09 13:39:58 +00:00
torch.save(state, checkpoint_path)
2018-02-13 09:45:52 +00:00
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
current_step, epoch):
2018-02-09 13:39:58 +00:00
if model_loss < best_loss:
new_state_dict = model.state_dict()
2018-08-02 14:34:17 +00:00
state = {
'model': new_state_dict,
'optimizer': optimizer.state_dict(),
'step': current_step,
'epoch': epoch,
'linear_loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y")
}
2018-02-09 13:39:58 +00:00
best_loss = model_loss
2018-02-13 09:45:52 +00:00
bestmodel_path = 'best_model.pth.tar'
2018-02-09 13:39:58 +00:00
bestmodel_path = os.path.join(out_path, bestmodel_path)
print(" | > Best model saving with loss {0:.2f} : {1:}".format(
2018-04-03 10:24:57 +00:00
model_loss, bestmodel_path))
2018-02-09 13:39:58 +00:00
torch.save(state, bestmodel_path)
return best_loss
2018-01-22 09:48:59 +00:00
def check_update(model, grad_clip, grad_top):
r'''Check model gradient against unexpected jumps and failures'''
skip_flag = False
2018-05-10 23:25:48 +00:00
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
if np.isinf(grad_norm):
print(" | > Gradient is INF !!")
skip_flag = True
elif grad_norm > grad_top:
print(" | > Gradient is above the top limit !!")
skip_flag = True
return grad_norm, skip_flag
def lr_decay(init_lr, global_step, warmup_steps):
r'''from https://github.com/r9y9/tacotron_pytorch/blob/master/train.py'''
2018-04-06 10:53:49 +00:00
warmup_steps = float(warmup_steps)
2018-02-01 16:26:40 +00:00
step = global_step + 1.
lr = init_lr * warmup_steps**0.5 * np.minimum(step * warmup_steps**-1.5,
step**-0.5)
return lr
2018-02-23 14:20:22 +00:00
def mk_decay(init_mk, max_epoch, n_epoch):
return init_mk * ((max_epoch - n_epoch) / max_epoch)
2018-02-23 14:20:22 +00:00
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = (sequence_length.unsqueeze(1)
.expand_as(seq_range_expand))
return seq_range_expand < seq_length_expand
2018-07-20 11:10:25 +00:00
def synthesis(model, ap, text, use_cuda, text_cleaner):
2018-08-02 14:34:17 +00:00
text_cleaner = [text_cleaner]
seq = np.array(text_to_sequence(text, text_cleaner))
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda().long()
_, linear_out, alignments, _ = model.forward(chars_var)
linear_out = linear_out[0].data.cpu().numpy()
wav = ap.inv_spectrogram(linear_out.T)
return wav, linear_out, alignments