updates and debugs

pull/10/head
Eren Golge 2018-02-13 01:45:52 -08:00
parent dadefb5dbc
commit 56697ac8cf
10 changed files with 122 additions and 64 deletions

View File

@ -15,7 +15,7 @@
"lr": 0.003,
"lr_patience": 5,
"lr_decay": 0.5,
"batch_size": 98,
"batch_size": 180,
"r": 5,
"griffin_lim_iters": 60,
@ -23,7 +23,8 @@
"num_loader_workers": 32,
"save_step": 200,
"checkpoint": false,
"save_step": 69,
"data_path": "/data/shared/KeithIto/LJSpeech-1.0",
"output_path": "result",
"log_dir": "/home/erogol/projects/TTS/logs/"

View File

@ -72,9 +72,14 @@ class LJSpeechDataset(Dataset):
timesteps = mel.shape[2]
# PAD with zeros that can be divided by outputs per step
if timesteps % self.outputs_per_step != 0:
linear = pad_per_step(linear, self.outputs_per_step)
mel = pad_per_step(mel, self.outputs_per_step)
if (timesteps + 1) % self.outputs_per_step != 0:
pad_len = self.outputs_per_step - \
((timesteps + 1) % self.outputs_per_step)
pad_len += 1
else:
pad_len = 1
linear = pad_per_step(linear, pad_len)
mel = pad_per_step(mel, pad_len)
# reshape jombo
linear = linear.transpose(0, 2, 1)

View File

@ -192,6 +192,14 @@ class Encoder(nn.Module):
self.cbhg = CBHG(128, K=16, projections=[128, 128])
def forward(self, inputs):
r"""
Args:
inputs (FloatTensor): embedding features
Shapes:
- inputs: batch x time x embedding_size
- outputs: batch x time x 128
"""
inputs = self.prenet(inputs)
return self.cbhg(inputs)
@ -200,12 +208,9 @@ class Decoder(nn.Module):
r"""Decoder module.
Args:
memory_dim (int): memory vector sample size
r (int): number of outputs per time step
Shape:
- input:
- output:
in_features (int): input vector (encoder output) sample size.
memory_dim (int): memory vector (prev. time-step output) sample size.
r (int): number of outputs per time step.
"""
def __init__(self, in_features, memory_dim, r):
super(Decoder, self).__init__()
@ -263,9 +268,7 @@ class Decoder(nn.Module):
# Grouping multiple frames if necessary
if memory.size(-1) == self.memory_dim:
print(" > Blamento", memory.shape)
memory = memory.view(B, memory.size(1) // self.r, -1)
print(" > Blamento", memory.shape)
assert memory.size(-1) == self.memory_dim * self.r,\
" !! Dimension mismatch {} vs {} * {}".format(memory.size(-1),
self.memory_dim, self.r)

View File

@ -20,7 +20,7 @@ class Tacotron(nn.Module):
# Trying smaller std
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(embedding_dim)
self.decoder = Decoder(mel_dim, r)
self.decoder = Decoder(256, mel_dim, r)
self.postnet = CBHG(mel_dim, K=8, projections=[256, mel_dim])
self.last_linear = nn.Linear(mel_dim * 2, freq_dim)

File diff suppressed because one or more lines are too long

View File

@ -41,6 +41,7 @@ class TestDataset(unittest.TestCase):
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
item_idx = data[4]
@ -48,7 +49,45 @@ class TestDataset(unittest.TestCase):
check_count = len(neg_values)
assert check_count == 0, \
" !! Negative values in text_input: {}".format(check_count)
# TODO: more assertion here
assert linear_input.shape[0] == c.batch_size
assert mel_input.shape[0] == c.batch_size
assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
os.path.join(c.data_path, 'wavs'),
1,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
dataloader = DataLoader(dataset, batch_size=1,
shuffle=True, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
item_idx = data[4]
# check the last time step to be zero padded
assert mel_input[0, -1].sum() == 0
assert mel_input[0, -2].sum() != 0
assert linear_input[0, -1].sum() == 0
assert linear_input[0, -2].sum() != 0

View File

@ -15,7 +15,7 @@
"lr": 0.003,
"lr_patience": 5,
"lr_decay": 0.5,
"batch_size": 8,
"batch_size": 2,
"r": 5,
"griffin_lim_iters": 60,

View File

@ -20,7 +20,7 @@ from tensorboardX import SummaryWriter
from utils.generic_utils import (Progbar, remove_experiment_folder,
create_experiment_folder, save_checkpoint,
load_config, lr_decay)
save_best_model, load_config, lr_decay)
from utils.model import get_param_size
from utils.visual import plot_alignment, plot_spectrogram
from datasets.LJSpeech import LJSpeechDataset
@ -101,7 +101,7 @@ def main(args):
optimizer.load_state_dict(checkpoint['optimizer'])
print("\n > Model restored from step %d\n" % args.restore_step)
start_epoch = checkpoint['step'] // len(dataloader)
best_loss = checkpoint['linear_loss']
else:
start_epoch = 0
print("\n > Starting a new training")
@ -144,6 +144,7 @@ def main(args):
optimizer.zero_grad()
# Add a single frame of zeros to Mel Specs for better end detection
#try:
# mel_input = np.concatenate((np.zeros(
# [c.batch_size, 1, c.num_mels], dtype=np.float32),
@ -214,9 +215,11 @@ def main(args):
if current_step % c.save_step == 0:
# save model
best_loss = save_checkpoint(model, loss.data[0],
best_loss, out_path=OUT_PATH)
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, linear_loss.data[0],
best_loss, OUT_PATH,
current_step, epoch)
# Diagnostic visualizations
const_spec = linear_output[0].data.cpu().numpy()
@ -243,6 +246,14 @@ def main(args):
print(audio_signal.max())
print(audio_signal.min())
# average loss after the epoch
avg_epoch_loss = np.mean(
progbar.sum_values['linear_loss'][0] / max(1, progbar.sum_values['linear_loss'][1]))
best_loss = save_best_model(model, optimizer, avg_epoch_loss,
best_loss, OUT_PATH,
current_step, epoch)
#lr_scheduler.step(loss.data[0])
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0

View File

@ -14,9 +14,8 @@ def prepare_data(inputs):
return np.stack([pad_data(x, max_len) for x in inputs])
def pad_per_step(inputs, outputs_per_step):
"""zero pad inputs if it is not divisible with outputs_per_step (r)"""
def pad_per_step(inputs, pad_len):
timesteps = inputs.shape[-1]
return np.pad(inputs, [[0, 0], [0, 0],
[0, outputs_per_step - (timesteps % outputs_per_step)]],
[0, pad_len]],
mode='constant', constant_values=0.0)

View File

@ -48,7 +48,8 @@ def copy_config_file(config_file, path):
shutil.copyfile(config_file, out_path)
def save_checkpoint(model, model_loss, best_loss, out_path):
def save_checkpoint(model, optimizer, model_loss, best_loss, out_path,
current_step, epoch):
checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(out_path, checkpoint_path)
print("\n | > Checkpoint saving : {}".format(checkpoint_path))
@ -56,16 +57,24 @@ def save_checkpoint(model, model_loss, best_loss, out_path):
'optimizer': optimizer.state_dict(),
'step': current_step,
'epoch': epoch,
'total_loss': loss.data[0],
'linear_loss': linear_loss.data[0],
'mel_loss': mel_loss.data[0],
'linear_loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y")}
torch.save(state, checkpoint_path)
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
current_step, epoch):
if model_loss < best_loss:
state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'step': current_step,
'epoch': epoch,
'linear_loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y")}
best_loss = model_loss
bestmodel_path = 'best_model.pth.tar'.format(current_step)
bestmodel_path = 'best_model.pth.tar'
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n | > Best model saving with loss {} : {}".format(model_loss, bestmodel_path))
print("\n | > Best model saving with loss {0:.2f} : {1:}".format(model_loss, bestmodel_path))
torch.save(state, bestmodel_path)
return best_loss