2018-01-22 09:48:59 +00:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import glob
|
|
|
|
import time
|
|
|
|
import shutil
|
|
|
|
import datetime
|
2018-01-22 16:20:20 +00:00
|
|
|
import json
|
2018-01-22 09:48:59 +00:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
2018-01-22 16:20:20 +00:00
|
|
|
class AttrDict(dict):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super(AttrDict, self).__init__(*args, **kwargs)
|
|
|
|
self.__dict__ = self
|
|
|
|
|
|
|
|
|
|
|
|
def load_config(config_path):
|
|
|
|
config = AttrDict()
|
|
|
|
config.update(json.load(open(config_path, "r")))
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
2018-01-22 09:48:59 +00:00
|
|
|
def create_experiment_folder(root_path):
|
|
|
|
""" Create a folder with the current date and time """
|
|
|
|
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I:%M%p")
|
|
|
|
output_folder = os.path.join(root_path, date_str)
|
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
|
|
print(" > Experiment folder: {}".format(output_folder))
|
|
|
|
return output_folder
|
|
|
|
|
|
|
|
|
|
|
|
def remove_experiment_folder(experiment_path):
|
|
|
|
"""Check folder if there is a checkpoint, otherwise remove the folder"""
|
|
|
|
|
|
|
|
checkpoint_files = glob.glob(experiment_path+"/*.pth.tar")
|
2018-01-22 16:20:20 +00:00
|
|
|
if len(checkpoint_files) < 2:
|
2018-01-22 09:48:59 +00:00
|
|
|
shutil.rmtree(experiment_path)
|
|
|
|
print(" ! Run is removed from {}".format(experiment_path))
|
|
|
|
else:
|
|
|
|
print(" ! Run is kept in {}".format(experiment_path))
|
|
|
|
|
|
|
|
|
|
|
|
def copy_config_file(config_file, path):
|
|
|
|
config_name = os.path.basename(config_file)
|
|
|
|
out_path = os.path.join(path, config_name)
|
|
|
|
shutil.copyfile(config_file, out_path)
|
|
|
|
|
|
|
|
|
|
|
|
def save_checkpoint(state, filename='checkpoint.pth.tar'):
|
|
|
|
torch.save(state, filename)
|
|
|
|
|
|
|
|
|
|
|
|
class Progbar(object):
|
|
|
|
"""Displays a progress bar.
|
|
|
|
# Arguments
|
|
|
|
target: Total number of steps expected, None if unknown.
|
|
|
|
interval: Minimum visual progress update interval (in seconds).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, target, width=30, verbose=1, interval=0.05):
|
|
|
|
self.width = width
|
|
|
|
self.target = target
|
|
|
|
self.sum_values = {}
|
|
|
|
self.unique_values = []
|
|
|
|
self.start = time.time()
|
|
|
|
self.last_update = 0
|
|
|
|
self.interval = interval
|
|
|
|
self.total_width = 0
|
|
|
|
self.seen_so_far = 0
|
|
|
|
self.verbose = verbose
|
|
|
|
self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
|
|
|
|
sys.stdout.isatty()) or
|
|
|
|
'ipykernel' in sys.modules)
|
|
|
|
|
|
|
|
def update(self, current, values=None, force=False):
|
|
|
|
"""Updates the progress bar.
|
|
|
|
# Arguments
|
|
|
|
current: Index of current step.
|
|
|
|
values: List of tuples (name, value_for_last_step).
|
|
|
|
The progress bar will display averages for these values.
|
|
|
|
force: Whether to force visual progress update.
|
|
|
|
"""
|
|
|
|
values = values or []
|
|
|
|
for k, v in values:
|
|
|
|
if k not in self.sum_values:
|
|
|
|
self.sum_values[k] = [v * (current - self.seen_so_far),
|
|
|
|
current - self.seen_so_far]
|
|
|
|
self.unique_values.append(k)
|
|
|
|
else:
|
|
|
|
self.sum_values[k][0] += v * (current - self.seen_so_far)
|
|
|
|
self.sum_values[k][1] += (current - self.seen_so_far)
|
|
|
|
self.seen_so_far = current
|
|
|
|
|
|
|
|
now = time.time()
|
|
|
|
info = ' - %.0fs' % (now - self.start)
|
|
|
|
if self.verbose == 1:
|
|
|
|
if (not force and (now - self.last_update) < self.interval and
|
|
|
|
self.target is not None and current < self.target):
|
|
|
|
return
|
|
|
|
|
|
|
|
prev_total_width = self.total_width
|
|
|
|
if self._dynamic_display:
|
|
|
|
sys.stdout.write('\b' * prev_total_width)
|
|
|
|
sys.stdout.write('\r')
|
|
|
|
else:
|
|
|
|
sys.stdout.write('\n')
|
|
|
|
|
|
|
|
if self.target is not None:
|
|
|
|
numdigits = int(np.floor(np.log10(self.target))) + 1
|
|
|
|
barstr = '%%%dd/%d [' % (numdigits, self.target)
|
|
|
|
bar = barstr % current
|
|
|
|
prog = float(current) / self.target
|
|
|
|
prog_width = int(self.width * prog)
|
|
|
|
if prog_width > 0:
|
|
|
|
bar += ('=' * (prog_width - 1))
|
|
|
|
if current < self.target:
|
|
|
|
bar += '>'
|
|
|
|
else:
|
|
|
|
bar += '='
|
|
|
|
bar += ('.' * (self.width - prog_width))
|
|
|
|
bar += ']'
|
|
|
|
else:
|
|
|
|
bar = '%7d/Unknown' % current
|
|
|
|
|
|
|
|
self.total_width = len(bar)
|
|
|
|
sys.stdout.write(bar)
|
|
|
|
|
|
|
|
if current:
|
|
|
|
time_per_unit = (now - self.start) / current
|
|
|
|
else:
|
|
|
|
time_per_unit = 0
|
|
|
|
if self.target is not None and current < self.target:
|
|
|
|
eta = time_per_unit * (self.target - current)
|
|
|
|
if eta > 3600:
|
|
|
|
eta_format = '%d:%02d:%02d' % (
|
|
|
|
eta // 3600, (eta % 3600) // 60, eta % 60)
|
|
|
|
elif eta > 60:
|
|
|
|
eta_format = '%d:%02d' % (eta // 60, eta % 60)
|
|
|
|
else:
|
|
|
|
eta_format = '%ds' % eta
|
|
|
|
|
|
|
|
info = ' - ETA: %s' % eta_format
|
|
|
|
else:
|
|
|
|
if time_per_unit >= 1:
|
|
|
|
info += ' %.0fs/step' % time_per_unit
|
|
|
|
elif time_per_unit >= 1e-3:
|
|
|
|
info += ' %.0fms/step' % (time_per_unit * 1e3)
|
|
|
|
else:
|
|
|
|
info += ' %.0fus/step' % (time_per_unit * 1e6)
|
|
|
|
|
|
|
|
for k in self.unique_values:
|
|
|
|
info += ' - %s:' % k
|
|
|
|
if isinstance(self.sum_values[k], list):
|
|
|
|
avg = np.mean(
|
|
|
|
self.sum_values[k][0] / max(1, self.sum_values[k][1]))
|
|
|
|
if abs(avg) > 1e-3:
|
|
|
|
info += ' %.4f' % avg
|
|
|
|
else:
|
|
|
|
info += ' %.4e' % avg
|
|
|
|
else:
|
|
|
|
info += ' %s' % self.sum_values[k]
|
|
|
|
|
|
|
|
self.total_width += len(info)
|
|
|
|
if prev_total_width > self.total_width:
|
|
|
|
info += (' ' * (prev_total_width - self.total_width))
|
|
|
|
|
|
|
|
if self.target is not None and current >= self.target:
|
|
|
|
info += '\n'
|
|
|
|
|
|
|
|
sys.stdout.write(info)
|
|
|
|
sys.stdout.flush()
|
|
|
|
|
|
|
|
elif self.verbose == 2:
|
|
|
|
if self.target is None or current >= self.target:
|
|
|
|
for k in self.unique_values:
|
|
|
|
info += ' - %s:' % k
|
|
|
|
avg = np.mean(
|
|
|
|
self.sum_values[k][0] / max(1, self.sum_values[k][1]))
|
|
|
|
if avg > 1e-3:
|
|
|
|
info += ' %.4f' % avg
|
|
|
|
else:
|
|
|
|
info += ' %.4e' % avg
|
|
|
|
info += '\n'
|
|
|
|
|
|
|
|
sys.stdout.write(info)
|
|
|
|
sys.stdout.flush()
|
|
|
|
|
|
|
|
self.last_update = now
|
|
|
|
|
|
|
|
def add(self, n, values=None):
|
|
|
|
self.update(self.seen_so_far + n, values)
|