Consider the following factors to define WDT reset delay:
1. Cannot be too small. This is to avoid premature WDT reset in pieces of timeout cascading.
2. Cannot be too large. This is to pass Greentea reset_reason/watchdog_reset tests, which have e.g. 50~100 reset delay tolerance.
Original implementation doesn't enable watchdog reset in pieces of cascaded timeout, except the last one. This is to guarantee re-configuration can be in time, but in interrupt disabled scenario e.g. Hard Fault, watchdog reset can cease to be effective.
This change enables watchdog reset all the way of cascaded timeout. With trade-off, guaranteed watchdog reset function is more significant than re-configuration in time.
At IAR linking, the default method of 'initialize by copy' is 'auto', which will estimate
different packing algorithms, including complex 'lz77', for smallest memory footprint. But
the algorithm itself can consume some SRAM and cause OOM at linking time for NANO130, which
just has 16KiB SRAM. To avoid this error, always choose 'none' packing algorithm.
MOSI1/MISO1 are used in second bit of 2-bit transfer mode and cannot be used
for normal MOSI/MISO. Remove them from pinmap.
This is also to fix FPGA CI test mbed_hal_fpga_ci_test_shield-spi/
SPI - basic test.
Without free-up of peripheral pins, peripheral pins of the same peripheral may
share by multiple ports after port iteration, and this peripheral may fail with
pin interference.
Fix logic error on replying NACK at the end of transfer.
This is also to fix FPGA CI test mbed_hal_fpga_ci_test_shield-i2c/
i2c - test single byte read i2c API.
Better IP initialization sequence:
1. Configure IP pins
2. Select IP clock source and then enable it
3. Reset the IP (SYS_ResetModule)
NOTE1: IP reset takes effect regardless of IP clock. So it doesn't matter if
IP clock enable is before IP reset.
NOTE2: Non-configured pins may disturb IP's state, so IP pinout first and then
IP reset.
NOTE3: IP reset at the end of IP initialization sequence can cover unexpected
situation.
On ARMC6 with optimization level "-Os", the two functions NVIC_SetVector/NVIC_GetVector
will be translated to illegal instruction for trapping due to NVIC_FLASH_VECTOR_ADDRESS
defined as direct 0. Fixed by defining NVIC_FLASH_VECTOR_ADDRESS as a symbol instead to
avoid such optimization error.
Instead of user defined symbols in assembly files or C files,
use linker scripts to add heap and stack - this is inconsistent
with ARM std linker scripts
With support for checking H/W UART initialized or not, we can simplify stdio management:
1. When serial_init(&stdio_uart) calls in, just set the 'stdio_uart_inited' flag.
2. When serial_free(&stdio_uart) calls in, just clear the 'stdio_uart_inited' flag.
Except above, we needn't make special handling with 'stdio_uart'.
The same H/W UART may be shared by multiple serial_t objects. This fix tries to avoid
re-configuring the same H/W UART in serial_init() when there are multiple serial_t
objects constructed. To re-configure UART, call serial_baud() and serial_format()
explicitly. This can avoid confusion when e.g. a newly constructed serial_t object
changes baudrate unexpectedly in serial_init().