The HAL gpio_irq_api stores object IDs, which serve as a form of context
for the dispatch of the interrupt handler in the drivers level
InterruptIn Class. The way this is achieved is that the InterruptIn
Class casts its address to uint32_t, which is stored as the ID.
This results in compilation failure when the size of an object pointer
is greater than uint32_t, for example when building on a PC for unit
testing.
In order to allow Unit Testing of the InterruptIn Class, we replace the
use of uint32_t with uintptr_t (type capable of holding a pointer),
which allows portability and expresses intentions more clearly.
In aid of this latter goal, we also replace the use of the name "id"
with "context", to improve clarity - these are addresses of the context
related to that callback.
Modify scatter files to specify heap load region and add small libraries
to list of supported libraries in target.json.# Please enter the commit message for your changes. Lines starting
Refactor all Toshiba targets to be CMake buildsystem targets. This removes
the need for checking MBED_TARGET_LABELS repeatedly and allows us to be
more flexible in the way we include MBED_TARGET source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using `target_link_libraries` its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
Add license identifier to files which Arm owns the copyright to,
and contain either BSD-3 or Apache-2.0 licenses. This is to address
license errors raised by scancode analysis.
Scancode found missing license notices in our source files. This commit
addresses those issues by adding an Apache-2.0 notice to source files
highlighted.
Workaround a bug where the boot stack size configuration option is not
passed on to armlink, the Arm Compiler's linker. Prefer
MBED_CONF_TARGET_BOOT_STACK_SIZE if present, as this is what the
configuration system should provide. Fall back to MBED_BOOT_STACK_SIZE
if MBED_CONF_TARGET_BOOT_STACK_SIZE is not defined, as in the case of
buggy tools. If both MBED_CONF_TARGET_BOOT_STACK_SIZE and
MBED_BOOT_STACK_SIZE are not defined, then we fall back to a hard-coded
value provided by the linkerscript. See
https://github.com/ARMmbed/mbed-os/issues/13474 for more information.
To allow overriding of the boot stack size from the Mbed configuration
system, consistently use MBED_CONF_TARGET_BOOT_STACK_SIZE rather than
MBED_BOOT_STACK_SIZE.
Fixes#10319
* Change "is supported" check to be a macro, so it can be done at
compile-time.
* Eliminate weird shift on 7-bit CRCs.
* Add support for 32-bit CRCs and reversals to TMPM3HQ.
* Change "is supported" check to be a macro, so it can be done at
compile-time.
* Eliminate weird shift on 7-bit CRCs.
* Add support for 32-bit CRCs and reversals to TMPM3HQ.
ARM Compiler 6.13 testing revealed linker errors pointing out
conflicting use of `__user_setup_stackheap` and
`__user_initial_stackheap` in some targets. Remove the unwanted
`__user_initial_stackheap` from the targets - the setup is
centralised in the common platform code.
Looking into this, a number of other issues were highlighted
* Almost all targets had `__initial_sp` hardcoded in assembler,
rather than getting it from the scatter file. This was behind
issue #11313. Fix this generally.
* A few targets' `__initial_sp` values did not match the scatter
file layout, in some cases meaning they were overlapping heap
space. They now all use the area reserved in the scatter file.
If any problems are seen, then there is an error in the
scatter file.
* A number of targets were reserving unneeded space for heap and
stack in their startup assembler, on top of the space reserved in
the scatter file, so wasting a few K. A couple were using that
space for the stack, rather than the space in the scatter file.
To clarify expected behaviour:
* Each scatter file contains empty regions `ARM_LIB_HEAP` and
`ARM_LIB_STACK` to reserve space. `ARM_LIB_STACK` is sized
by the macro `MBED_BOOT_STACK_SIZE`, which is set by the tools.
`ARM_LIB_HEAP` is generally the space left over after static
RAM and stack.
* The address of the end of `ARM_LIB_STACK` is written into the
vector table and on reset the CPU sets MSP to that address.
* The common platform code in Mbed OS provides `__user_setup_stackheap`
for the ARM library. The ARM library calls this during startup, and
it calls `__mbed_user_setup_stackheap`.
* The default weak definition of `__mbed_user_setup_stackheap` does not
modify SP, so we remain on the boot stack, and the heap is set to
the region described by `ARM_LIB_HEAP`. If `ARM_LIB_HEAP` doesn't
exist, then the heap is the space from the end of the used data in
`RW_IRAM1` to the start of `ARM_LIB_STACK`.
* Targets can override `__mbed_user_setup_stackheap` if they want.
Currently only Renesas (ARMv7-A class) devices do.
* If microlib is in use, then it doesn't call `__user_setup_stackheap`.
Instead it just finds and uses `ARM_LIB_STACK` and `ARM_LIB_HEAP`
itself.