2018-01-22 09:48:59 +00:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
2018-03-27 16:21:53 +00:00
|
|
|
def pad_data(x, length):
|
2018-01-22 09:48:59 +00:00
|
|
|
_pad = 0
|
2018-02-08 13:57:43 +00:00
|
|
|
assert x.ndim == 1
|
2018-01-31 15:21:22 +00:00
|
|
|
return np.pad(x, (0, length - x.shape[0]),
|
|
|
|
mode='constant',
|
|
|
|
constant_values=_pad)
|
2018-01-22 09:48:59 +00:00
|
|
|
|
|
|
|
|
|
|
|
def prepare_data(inputs):
|
|
|
|
max_len = max((len(x) for x in inputs))
|
2018-03-27 16:21:53 +00:00
|
|
|
return np.stack([pad_data(x, max_len) for x in inputs])
|
2018-03-22 19:34:16 +00:00
|
|
|
|
|
|
|
|
2018-02-13 09:45:52 +00:00
|
|
|
def pad_per_step(inputs, pad_len):
|
2018-01-22 09:48:59 +00:00
|
|
|
timesteps = inputs.shape[-1]
|
|
|
|
return np.pad(inputs, [[0, 0], [0, 0],
|
2018-02-13 09:45:52 +00:00
|
|
|
[0, pad_len]],
|
2018-01-22 09:48:59 +00:00
|
|
|
mode='constant', constant_values=0.0)
|