Stop token prediction - does train yet

pull/10/head
Eren Golge 2018-03-22 12:34:16 -07:00
parent cb48406383
commit 5750090fcd
10 changed files with 121 additions and 41 deletions

View File

@ -12,16 +12,16 @@
"text_cleaner": "english_cleaners",
"epochs": 2000,
"lr": 0.001,
"lr": 0.0003,
"warmup_steps": 4000,
"batch_size": 32,
"eval_batch_size": 32,
"eval_batch_size":32,
"r": 5,
"griffin_lim_iters": 60,
"power": 1.5,
"num_loader_workers": 12,
"num_loader_workers": 8,
"checkpoint": false,
"save_step": 69,

View File

@ -7,7 +7,8 @@ from torch.utils.data import Dataset
from TTS.utils.text import text_to_sequence
from TTS.utils.audio import AudioProcessor
from TTS.utils.data import prepare_data, pad_data, pad_per_step
from TTS.utils.data import (prepare_data, pad_data, pad_per_step,
prepare_tensor, prepare_stop_target)
class LJSpeechDataset(Dataset):
@ -93,15 +94,26 @@ class LJSpeechDataset(Dataset):
text_lenghts = np.array([len(x) for x in text])
max_text_len = np.max(text_lenghts)
linear = [self.ap.spectrogram(w).astype('float32') for w in wav]
mel = [self.ap.melspectrogram(w).astype('float32') for w in wav]
mel_lengths = [m.shape[1] for m in mel]
# compute 'stop token' targets
stop_targets = [np.array([0.]*mel_len) for mel_len in mel_lengths]
# PAD sequences with largest length of the batch
text = prepare_data(text).astype(np.int32)
wav = prepare_data(wav)
linear = np.array([self.ap.spectrogram(w).astype('float32') for w in wav])
mel = np.array([self.ap.melspectrogram(w).astype('float32') for w in wav])
# PAD features with largest length of the batch
linear = prepare_tensor(linear)
mel = prepare_tensor(mel)
assert mel.shape[2] == linear.shape[2]
timesteps = mel.shape[2]
# PAD stop targets
stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step)
# PAD with zeros that can be divided by outputs per step
if (timesteps + 1) % self.outputs_per_step != 0:
pad_len = self.outputs_per_step - \
@ -112,7 +124,7 @@ class LJSpeechDataset(Dataset):
linear = pad_per_step(linear, pad_len)
mel = pad_per_step(mel, pad_len)
# reshape jombo
# reshape mojo
linear = linear.transpose(0, 2, 1)
mel = mel.transpose(0, 2, 1)
@ -121,7 +133,8 @@ class LJSpeechDataset(Dataset):
text = torch.LongTensor(text)
linear = torch.FloatTensor(linear)
mel = torch.FloatTensor(mel)
return text, text_lenghts, linear, mel, item_idxs[0]
stop_targets = torch.FloatTensor(stop_targets)
return text, text_lenghts, linear, mel, stop_targets, item_idxs[0]
raise TypeError(("batch must contain tensors, numbers, dicts or lists;\
found {}"

Binary file not shown.

View File

@ -5,6 +5,7 @@ from torch import nn
from .attention import AttentionRNN
from .attention import get_mask_from_lengths
from .custom_layers import StopProjection
class Prenet(nn.Module):
r""" Prenet as explained at https://arxiv.org/abs/1703.10135.
@ -214,8 +215,9 @@ class Decoder(nn.Module):
r (int): number of outputs per time step.
eps (float): threshold for detecting the end of a sentence.
"""
def __init__(self, in_features, memory_dim, r, eps=0.05):
def __init__(self, in_features, memory_dim, r, eps=0.05, mode='train'):
super(Decoder, self).__init__()
self.mode = mode
self.max_decoder_steps = 200
self.memory_dim = memory_dim
self.eps = eps
@ -231,6 +233,8 @@ class Decoder(nn.Module):
[nn.GRUCell(256, 256) for _ in range(2)])
# RNN_state -> |Linear| -> mel_spec
self.proj_to_mel = nn.Linear(256, memory_dim * r)
# RNN_state | attention_context -> |Linear| -> stop_token
self.stop_token = StopProjection(256 + in_features, r)
def forward(self, inputs, memory=None):
"""
@ -252,10 +256,9 @@ class Decoder(nn.Module):
B = inputs.size(0)
# Run greedy decoding if memory is None
greedy = memory is None
greedy = ~self.training
if memory is not None:
# Grouping multiple frames if necessary
if memory.size(-1) == self.memory_dim:
memory = memory.view(B, memory.size(1) // self.r, -1)
@ -283,6 +286,7 @@ class Decoder(nn.Module):
outputs = []
alignments = []
stop_outputs = []
t = 0
memory_input = initial_memory
@ -292,11 +296,12 @@ class Decoder(nn.Module):
memory_input = outputs[-1]
else:
# combine prev. model output and prev. real target
memory_input = torch.div(outputs[-1] + memory[t-1], 2.0)
# memory_input = torch.div(outputs[-1] + memory[t-1], 2.0)
# add a random noise
noise = torch.autograd.Variable(
memory_input.data.new(memory_input.size()).normal_(0.0, 0.5))
memory_input = memory_input + noise
# noise = torch.autograd.Variable(
# memory_input.data.new(memory_input.size()).normal_(0.0, 0.5))
# memory_input = memory_input + noise
memory_input = memory[t-1]
# Prenet
processed_memory = self.prenet(memory_input)
@ -316,35 +321,42 @@ class Decoder(nn.Module):
decoder_input, decoder_rnn_hiddens[idx])
# Residual connectinon
decoder_input = decoder_rnn_hiddens[idx] + decoder_input
output = decoder_input
stop_token_input = decoder_input
# stop token prediction
stop_token_input = torch.cat((output, current_context_vec), -1)
stop_output = self.stop_token(stop_token_input)
# predict mel vectors from decoder vectors
output = self.proj_to_mel(output)
outputs += [output]
alignments += [alignment]
stop_outputs += [stop_output]
t += 1
if greedy:
if (not greedy and self.training) or (greedy and memory is not None):
if t >= T_decoder:
break
else:
if t > 1 and is_end_of_frames(output, self.eps):
break
elif t > self.max_decoder_steps:
print(" !! Decoder stopped with 'max_decoder_steps'. \
Something is probably wrong.")
break
else:
if t >= T_decoder:
break
assert greedy or len(outputs) == T_decoder
# Back to batch first
alignments = torch.stack(alignments).transpose(0, 1)
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
stop_outputs = torch.stack(stop_outputs).transpose(0, 1).contiguous()
return outputs, alignments
return outputs, alignments, stop_outputs
def is_end_of_frames(output, eps=0.2): #0.2

Binary file not shown.

View File

@ -11,6 +11,7 @@ class Tacotron(nn.Module):
freq_dim=1025, r=5, padding_idx=None):
super(Tacotron, self).__init__()
self.r = r
self.mel_dim = mel_dim
self.linear_dim = linear_dim
self.embedding = nn.Embedding(len(symbols), embedding_dim,
@ -26,6 +27,7 @@ class Tacotron(nn.Module):
self.last_linear = nn.Linear(mel_dim * 2, freq_dim)
def forward(self, characters, mel_specs=None):
B = characters.size(0)
inputs = self.embedding(characters)
@ -33,7 +35,7 @@ class Tacotron(nn.Module):
encoder_outputs = self.encoder(inputs)
# (B, T', mel_dim*r)
mel_outputs, alignments = self.decoder(
mel_outputs, alignments, stop_outputs = self.decoder(
encoder_outputs, mel_specs)
# Post net processing below
@ -41,8 +43,9 @@ class Tacotron(nn.Module):
# Reshape
# (B, T, mel_dim)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
stop_outputs = stop_outputs.view(B, -1)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments
return mel_outputs, linear_outputs, alignments, stop_outputs

View File

@ -37,18 +37,23 @@ class DecoderTests(unittest.TestCase):
dummy_memory = T.autograd.Variable(T.rand(4, 120, 32))
print(layer)
output, alignment = layer(dummy_input, dummy_memory)
output, alignment, stop_output = layer(dummy_input, dummy_memory)
print(output.shape)
print(" > Stop ", stop_output.shape)
assert output.shape[0] == 4
assert output.shape[1] == 120 / 5
assert output.shape[2] == 32 * 5
assert stop_output.shape[0] == 4
assert stop_output.shape[1] == 120 / 5
assert stop_output.shape[2] == 5
class EncoderTests(unittest.TestCase):
def test_in_out(self):
layer = Encoder(128)
dummy_input = T.autograd.Variable(T.rand(4, 8, 128))
dummy_input = T.autograd.Variable(T.rand(4, 8, 128))
print(layer)
output = layer(dummy_input)

View File

@ -32,7 +32,7 @@ class TestDataset(unittest.TestCase):
c.power
)
dataloader = DataLoader(dataset, batch_size=c.batch_size,
dataloader = DataLoader(dataset, batch_size=2,
shuffle=True, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
@ -43,7 +43,8 @@ class TestDataset(unittest.TestCase):
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
item_idx = data[4]
stop_targets = data[4]
item_idx = data[5]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
@ -81,13 +82,16 @@ class TestDataset(unittest.TestCase):
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
item_idx = data[4]
stop_target = data[4]
item_idx = data[5]
# check the last time step to be zero padded
assert mel_input[0, -1].sum() == 0
assert mel_input[0, -2].sum() != 0
assert linear_input[0, -1].sum() == 0
assert linear_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target.sum() == 1

View File

@ -63,11 +63,12 @@ def signal_handler(signal, frame):
sys.exit(1)
def train(model, criterion, data_loader, optimizer, epoch):
def train(model, criterion, critetion_stop, data_loader, optimizer, epoch):
model = model.train()
epoch_time = 0
avg_linear_loss = 0
avg_mel_loss = 0
avg_stop_loss = 0
print(" | > Epoch {}/{}".format(epoch, c.epochs))
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
@ -80,6 +81,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
stop_targets = data[4]
current_step = num_iter + args.restore_step + epoch * len(data_loader) + 1
@ -93,6 +95,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
stop_targets_var = Variable(stop_targets)
linear_spec_var = Variable(linear_input, volatile=True)
# sort sequence by length for curriculum learning
@ -109,9 +112,10 @@ def train(model, criterion, data_loader, optimizer, epoch):
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
stop_targets_var = stop_targets_var.cuda()
# forward pass
mel_output, linear_output, alignments =\
mel_output, linear_output, alignments, stop_output =\
model.forward(text_input_var, mel_spec_var)
# loss computation
@ -119,7 +123,8 @@ def train(model, criterion, data_loader, optimizer, epoch):
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
stop_loss = critetion_stop(stop_output, stop_targets_var)
loss = mel_loss + linear_loss + 0.25*stop_loss
# backpass and check the grad norm
loss.backward()
@ -136,6 +141,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
# update
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('linear_loss', linear_loss.data[0]),
('stop_loss', stop_loss.data[0]),
('mel_loss', mel_loss.data[0]),
('grad_norm', grad_norm)])
@ -144,6 +150,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.data[0],
current_step)
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('TrainIterLoss/StopLoss', stop_loss.data[0], current_step)
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
current_step)
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
@ -184,19 +191,21 @@ def train(model, criterion, data_loader, optimizer, epoch):
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss
avg_stop_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss + 0.25*avg_stop_loss
# Plot Training Epoch Stats
tb.add_scalar('TrainEpochLoss/TotalLoss', loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/LinearLoss', linear_loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/StopLoss', stop_loss.data[0], current_step)
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0
return avg_linear_loss, current_step
def evaluate(model, criterion, data_loader, current_step):
def evaluate(model, criterion, criterion_stop, data_loader, current_step):
model = model.eval()
epoch_time = 0
@ -206,6 +215,7 @@ def evaluate(model, criterion, data_loader, current_step):
avg_linear_loss = 0
avg_mel_loss = 0
avg_stop_loss = 0
for num_iter, data in enumerate(data_loader):
start_time = time.time()
@ -215,38 +225,44 @@ def evaluate(model, criterion, data_loader, current_step):
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
stop_targets = data[4]
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
linear_spec_var = Variable(linear_input, volatile=True)
stop_targets_var = Variable(stop_targets)
# dispatch data to GPU
if use_cuda:
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
stop_targets_var = stop_targets_var.cuda()
# forward pass
mel_output, linear_output, alignments = model.forward(text_input_var)
mel_output, linear_output, alignments, stop_output = model.forward(text_input_var, mel_spec_var)
# loss computation
mel_loss = criterion(mel_output, mel_spec_var)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
stop_loss = criterion_stop(stop_output, stop_targets_var)
loss = mel_loss + linear_loss + 0.25*stop_loss
step_time = time.time() - start_time
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('stop_loss', stop_loss.data[0]),
('linear_loss', linear_loss.data[0]),
('mel_loss', mel_loss.data[0])])
avg_linear_loss += linear_loss.data[0]
avg_mel_loss += mel_loss.data[0]
avg_stop_loss += stop_loss.data[0]
# Diagnostic visualizations
idx = np.random.randint(mel_input.shape[0])
@ -278,12 +294,14 @@ def evaluate(model, criterion, data_loader, current_step):
# compute average losses
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss
avg_stop_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss + 0.25*avg_stop_loss
# Plot Learning Stats
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss, current_step)
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss, current_step)
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
tb.add_scalar('ValEpochLoss/StopLoss', avg_stop_loss, current_step)
return avg_linear_loss
@ -336,13 +354,15 @@ def main(args):
c.num_mels,
c.num_freq,
c.r)
optimizer = optim.Adam(model.parameters(), lr=c.lr)
if use_cuda:
criterion = nn.L1Loss().cuda()
criterion_stop = nn.BCELoss().cuda()
else:
criterion = nn.L1Loss()
criterion_stop = nn.BCELoss()
if args.restore_path:
checkpoint = torch.load(args.restore_path)
@ -370,8 +390,8 @@ def main(args):
best_loss = float('inf')
for epoch in range(0, c.epochs):
train_loss, current_step = train(model, criterion, train_loader, optimizer, epoch)
val_loss = evaluate(model, criterion, val_loader, current_step)
train_loss, current_step = train(model, criterion, criterion_stop, train_loader, optimizer, epoch)
val_loss = evaluate(model, criterion, criterion_stop, val_loader, current_step)
best_loss = save_best_model(model, optimizer, val_loss,
best_loss, OUT_PATH,
current_step, epoch)

View File

@ -14,6 +14,29 @@ def prepare_data(inputs):
return np.stack([pad_data(x, max_len) for x in inputs])
def pad_tensor(x, length):
_pad = 0
assert x.ndim == 2
return np.pad(x, [[0, 0], [0, length- x.shape[1]]], mode='constant', constant_values=_pad)
def prepare_tensor(inputs):
max_len = max((x.shape[1] for x in inputs))
return np.stack([pad_tensor(x, max_len) for x in inputs])
def pad_stop_target(x, length):
_pad = 1.
assert x.ndim == 1
return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)
def prepare_stop_target(inputs, out_steps):
max_len = max((x.shape[0] for x in inputs))
remainder = max_len % out_steps
return np.stack([pad_stop_target(x, max_len + out_steps - remainder) for x in inputs])
def pad_per_step(inputs, pad_len):
timesteps = inputs.shape[-1]
return np.pad(inputs, [[0, 0], [0, 0],