TTS/models/tacotron.py

38 lines
1.5 KiB
Python
Raw Normal View History

2018-01-22 14:59:41 +00:00
# coding: utf-8
import torch
from torch import nn
2018-06-21 14:33:30 +00:00
from utils.text.symbols import symbols
from layers.tacotron import Prenet, Encoder, Decoder, CBHG
2018-01-22 14:59:41 +00:00
2018-02-13 16:08:23 +00:00
2018-01-22 14:59:41 +00:00
class Tacotron(nn.Module):
def __init__(self, embedding_dim=256, linear_dim=1025, mel_dim=80,
2018-03-28 16:43:29 +00:00
r=5, padding_idx=None):
2018-01-22 14:59:41 +00:00
super(Tacotron, self).__init__()
2018-03-22 19:34:16 +00:00
self.r = r
2018-01-22 14:59:41 +00:00
self.mel_dim = mel_dim
self.linear_dim = linear_dim
self.embedding = nn.Embedding(len(symbols), embedding_dim,
padding_idx=padding_idx)
print(" | > Number of characters : {}".format(len(symbols)))
2018-01-22 14:59:41 +00:00
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(embedding_dim)
2018-02-13 09:45:52 +00:00
self.decoder = Decoder(256, mel_dim, r)
2018-01-22 14:59:41 +00:00
self.postnet = CBHG(mel_dim, K=8, projections=[256, mel_dim])
2018-03-28 16:43:29 +00:00
self.last_linear = nn.Linear(mel_dim * 2, linear_dim)
2018-01-22 14:59:41 +00:00
2018-07-13 12:50:55 +00:00
def forward(self, characters, mel_specs=None, text_lens=None):
2018-01-22 14:59:41 +00:00
B = characters.size(0)
inputs = self.embedding(characters)
2018-04-03 10:24:57 +00:00
# batch x time x dim
encoder_outputs = self.encoder(inputs)
2018-04-03 10:24:57 +00:00
# batch x time x dim*r
mel_outputs, alignments, stop_tokens = self.decoder(
2018-07-13 12:50:55 +00:00
encoder_outputs, mel_specs, text_lens)
2018-01-22 14:59:41 +00:00
# Reshape
2018-04-03 10:24:57 +00:00
# batch x time x dim
2018-01-22 14:59:41 +00:00
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens