mbed RTC specifications now dictate that the RTC needs to retain and keep on counting through reset. On Silicon Labs parts, this means the RTC API can not be backed by the Silicon Labs RTC peripheral, since that doesn't provide retention functionality.
Therefore:
* On EFM32GG, EFM32WG, EFM32LG: mbed RTC API is now backed by BURTC.
* On EFM32PG, EFR32MG, EFM32PG12, EFR32MG12: mbed RTC API is now backed by RTCC.
* On EFM32ZG, EFM32HG: mbed RTC API is sadly no longer supported, since these chips don't have retained memory.
I implemented the RTC feature.
The mainly changing is here.
- rtc_init()
Previously, I have initialized the time information register in the function, so the time count was cleaned by every calling rtc_init().
Currently, rtc_init() doesn't stop RTC from counting, and rtc_init() is safe to call repeatedly.
Therefore in order to satisfy specifications,I removed the initialization process of the time information register in the function.
- rtc_free()
Previously, I have initialized the RTC related register same as rtc_init(), so the time count was cleaned by calling rtc_free().
Currently, rtc_free() doesn't stop RTC from counting.
Therefore in order to satisfy specifications,I removed the process and decided not to do anything in the function.
If powerdown the RTC, Supply of the clock to the RTC is stopped, cannot keeping the count.
1. Enable LPTICKER for K22, K24, K64, K66, K82, KL82F, KW24D
2. Change the implementation to only use the LPTMR which reduces
the amount of interrupts generated which is required for tickless
operation
Signed-off-by: Mahesh Mahadevan <mahesh.mahadevan@nxp.com>
Re-implemented both us_ticker and lp_ticker to match the new API and specifications.
Details:
* On EFM32GG, EFM32WG, EFM32LG, EFM32HG, EFM32ZG: Use the RTC peripheral to back lp_ticker, and a TIMER to back us_ticker.
* On EFM32PG, EFR32MG, EFM32PG12, EFR32MG12: Use the RTCC peripheral to back lp_ticker (dual-purpose, also used to back RTC), and a TIMER to back us_ticker.
mbed RTC specifications now dictate that the RTC needs to retain and keep on counting through reset. On Silicon Labs parts, this means the RTC API can not be backed by the Silicon Labs RTC peripheral, since that doesn't provide retention functionality.
Therefore:
* On EFM32GG, EFM32WG, EFM32LG: mbed RTC API is now backed by BURTC.
* On EFM32PG, EFR32MG, EFM32PG12, EFR32MG12: mbed RTC API is now backed by RTCC.
* On EFM32ZG, EFM32HG: mbed RTC API is sadly no longer supported, since these chips don't have retained memory.
# Conflicts:
# targets/TARGET_Silicon_Labs/TARGET_EFM32/lp_ticker.c
# targets/TARGET_Silicon_Labs/TARGET_EFM32/rtc_api.c
# targets/targets.json
I implemented the SLEEP feature for Rnesas mbed boards.
The mainly changing is here.
- hal_sleep()
To satisfy the mbed specificationm, I implemented this function newly by using "sleep" that is one of low power mode that is incorporated in our hardware(RZ_A1).
In the "sleep", peripheral and memory state are maintained, and the peripherals continue to work and can generate interrupts.
- hal_deepsleep()
To satisfy the mbed specificationm, I implemented this function newly by combined using "sleep" and "module standby" that is the low power mode that is incorporated in our hardware(RZ_A1).
The "module standby" is peripheral module's powerdown.
Also in case of our "module standby", it need to read register as dummy when access to each register.