Add license identifier to files which Arm owns the copyright to,
and contain either BSD-3 or Apache-2.0 licenses. This is to address
license errors raised by scancode analysis.
With tickless mechanism hsem can be used for quite a long time
(time to set up PLL clock).
Also, if hsem is held to long, then this is not the current core which is faulty,
but probably the other (the one which hold the HSEM)
Add 2 targets for DISCO_H747I dualcore:
* DISCO_H747I -> for CM7 core
* DISCO_H747I_CM4 -> for CM4 core
Current restrictions:
* TICKLESS deactivated
* DeepSleep not supported (DeepSleep wrapped to sleep)
Warning: use of the same IP (example I2C1) by both core at the same time is not prevented,
but is strongly not recommended.
Some Hardware Semaphore are use for common IP, to manage concurrent access by both cores: Flash, GPIO, RCC.
Warning: Drag and drop of binary to DISCO_H747I will flash CM7.
In order to flash CM4, one can use STM32 CubeProgrammer tool.
Filter numbers 14 to 27 are reserved for dual CAN configuration.
However, CAN3 operates in single CAN configuration according to the
reference manual).
CAN_2 and CAN_3 are enum and not #define and this causes compilation error with GCC_ARM
Instead put back the test of CAN_NUM (which are defined in can_device.h).
After reset the MCR register content needs to be restored so we're
introducing the can_registers_init function to be called at the first
init stage, but also after reset. We also store the can frequency to
go through the initialisation phase again.
In order to apply the same mode in case of reset, we store the current
requested mode in the HAL structure.
To make storage in a single place, we also change can_monitor to call
can_mode function as they actually acting on same registers.
Instead of a static object, this will make driver
instantiation more robust and allow to re-use init
configuration on a need basis.
The CANName struct member is actually the CAN registers base address,
which is now available in the CanHandle.Instance field, so we don't need
CANName anymore.