We removed catching and passing, we want to know for any misconfiguration if bootloader
is supported. Regions should check if bootloader is supported. In case not, just return.
Otherwise we catch any error.
This should help us to uncover missing regions or other config error (in case bootloader
is enabled via bootloader_supported set to true).
Currently any misconfiguration of, for example, bootloader feature will cause the
build system to just silently drop it and continue building which can lead to
completed builds of something the user didn't want to build in worst case and
failing builds after compilation (=wasted time) in the best.
Related PR:
https://github.com/ARMmbed/mbed-os/pull/10924
The above PR adds functions to disable/enable serial input/output. If both serial input and serial output are disabled, the peripheral is freed. If either serial input or serial output is re-enabled, the peripheral is reinitialized.
I missed this change while working on the static pinmap and unfortunately it has an impact on it. The reinitialization is a problem for static pinmap. Now the HAL init()/init_direct() function is called not only in the constructor (but also when re-enabling the peripheral). In the current version, even if static pinmap constructor was used to create an object (and init_direct() HAL API), when reinitialization is done it uses init() HAL API. This must be split.
If static pinmap constructor is used, then the peripheral must be always initialized using HAL init_direct() function. If regular the constructor is used, then the peripheral must be initialized using HAL init() function. The same split also must be done while setting flow control during reinitialization.
At IAR linking, the default method of 'initialize by copy' is 'auto', which will estimate
different packing algorithms, including complex 'lz77', for smallest memory footprint. But
the algorithm itself can consume some SRAM and cause OOM at linking time for NANO130, which
just has 16KiB SRAM. To avoid this error, always choose 'none' packing algorithm.
If the fault handler was hit before the stdio console was used and
initialised, the initialisation code caused a "mutex in ISR" trap,
stopping the register dump from happening.
Temporarily set the `error_in_progress` flag at the top of the fault
handler, and restore it before calling `mbed_error`. Take the
opportunity to suppress fault dumps on recursive crashes, much as is
done inside `mbed_error`.
As the `psa` library is not included in the baremetal profile, perform
a TFM system reset only if the `psa` library is included in
the build otherwise perform a normal CMSIS system reset.
Previously Greentea tests was not initialising its storage
before asking for bd->get_program_size(), causing FlashBlockDevice to
return zero. This caused both TDBStorage's to use zero for both
parameter to SlicingBlockDevice(bd, 0, 0), effetivaly both then
used same addresses for slice. This caused SecureStore tests
to fail, because writes to internal RBP storage overwrote keys
from external storage.
Fine-tune TDBStore sizes, so that all tests can fit into storage.
At least with LPC55S69's default TDBStore configuration it's
impossible to run storage Greentea tests without exhausting the
memory reserved for storing keys.
Fixes an issue where number of keys were removed based on number of
threads which didn't have anything to do with the test case.
Fixes an issue where number of keys were assumed to be constant
but variable number was used for configuration.
In case our are contains data from previous reset() or reset_area(),
we might end up in the situation where free space contains valid
key headers, but we have not erased that area yet. This can cause
failures if the deinit() and init() because new scan of that area
would continue as long as keys are found. This causes keys on the
not-yet-erased area to be included in the new instance of TDBStore.
To prevent this failure, check after each key-write that our free
space does not contain valid key headers. Also make sure that we
erase one program unit sector over the master record. If we erased
just the master record,first key might is still there, causing next
init() to find it. Extend erase area by one program unit, so that
build_ram_table() won't find any keys.