The HAL gpio_irq_api stores object IDs, which serve as a form of context
for the dispatch of the interrupt handler in the drivers level
InterruptIn Class. The way this is achieved is that the InterruptIn
Class casts its address to uint32_t, which is stored as the ID.
This results in compilation failure when the size of an object pointer
is greater than uint32_t, for example when building on a PC for unit
testing.
In order to allow Unit Testing of the InterruptIn Class, we replace the
use of uint32_t with uintptr_t (type capable of holding a pointer),
which allows portability and expresses intentions more clearly.
In aid of this latter goal, we also replace the use of the name "id"
with "context", to improve clarity - these are addresses of the context
related to that callback.
The CMake macro `mbed_post_build_psoc6_merge_hex()` takes the name of
a Cypress target and an optional Cortex-M0 hex image as arguments. The
proper way to define and parse optional arguments of a function or
macro is `cmake_parse_arguments()`, which allows the caller to
indicate what they are passing rather than rely on an argument's
relative position within `${ARGN}` which is not rigorous.
Also, avoid duplicating the common part of the post build command
when the optional argument is passed/not passed.
When building greentea tests, each test is an executable with its
own output binary path. This is also the case when a user project
produces multiple executables. But the current implementation of
post-build operations always assumes there's only one executable,
at the root of the build directory.
The post-build command depends on Mbed target, and it always takes
the the executable we build as an input file. To achieve this, we
let each Mbed target (that has a post-build command) define a function
function(mbed_post_build_function target)
which takes a CMake executable target as an argument from which it can
get its binary path using generator expressions. It generates and adds
to the passed executable target a post-build custom command.
Notes:
* The function name needs to be exact, because CMake only supports
literal function calls - CMake can't dereference a function name from
a variable. To avoid multiple definitions of this function, each Mbed
target needs to guard it with a macro to check if the user is
building this Mbed target.
* `mbed_post_build_function()` is a function, but it is usually
defined by another macro rather than a parent function, because
nesting functions would make many variables inaccessible inside the
innermost `mbed_post_build_function()`.
* There's no more need to force regenerate images. Previously, post-
build commands were custom *targets* which always got to run, so we
force regenerated images on every build to avoid patching an image
that's already been patched once on previous build. Now post-build
commands are custom *commands* of the same executable target, and they
are only run if the executable target itself is rebuilt.
Update CMAKE_MODULE_PATH at once place.
Note, we update also CMAKE_MODULE_PATH in app.cmake. This is temporary until we get a proper way to include
Mbed Os (removing app.cmake need to be included by an application).
CMAKE_CURRENT_LIST_DIR behaves differently in functions. We store it in the CMakeLists itself, so anyone
calling a function would get the actual list dir where the scripts are.
To illustrate: if I call a function from src/CMakelists.txt, function located in src/scripts, `CMAKE_CURRENT_LIST_DIR` in the function would point
to the src/ folder but not to src/scripts.
- list files included via module path
- <project-name>_SOURCE_DIR for sources that are out of the current processed CMake
- CMAKE_CURRENT_LIST_DIR for listfiles