Merge branch 'feature-emac-mxrt1050' of https://github.com/NXPmicro/mbed into dev_rollup

pull/8753/head
Martin Kojtal 2018-11-15 13:58:27 +00:00
commit 9a252cd218
14 changed files with 1652 additions and 250 deletions

View File

@ -157,6 +157,9 @@
"tcp-wnd": "(TCP_MSS * 8)", "tcp-wnd": "(TCP_MSS * 8)",
"pbuf-pool-size": 16, "pbuf-pool-size": 16,
"mem-size": 51200 "mem-size": 51200
},
"MIMXRT1050_EVK": {
"mem-size": 36560
} }
} }
} }

View File

@ -0,0 +1,226 @@
/*
* Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_gpio.h"
#include "fsl_iomuxc.h"
#include "fsl_clock.h"
#include "mbed_wait_api.h"
/*******************************************************************************
* Code
******************************************************************************/
static void BOARD_InitModuleClock(void)
{
const clock_enet_pll_config_t config = {true, false, 1};
CLOCK_InitEnetPll(&config);
}
void kinetis_init_eth_hardware(void)
{
gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode};
CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 is configured as GPIO1_IO09 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_10_GPIO1_IO10, /* GPIO_AD_B0_10 is configured as GPIO1_IO10 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_04_ENET_RX_DATA00, /* GPIO_B1_04 is configured as ENET_RX_DATA00 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_05_ENET_RX_DATA01, /* GPIO_B1_05 is configured as ENET_RX_DATA01 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_06_ENET_RX_EN, /* GPIO_B1_06 is configured as ENET_RX_EN */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_07_ENET_TX_DATA00, /* GPIO_B1_07 is configured as ENET_TX_DATA00 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_08_ENET_TX_DATA01, /* GPIO_B1_08 is configured as ENET_TX_DATA01 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_09_ENET_TX_EN, /* GPIO_B1_09 is configured as ENET_TX_EN */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_10_ENET_REF_CLK, /* GPIO_B1_10 is configured as ENET_REF_CLK */
1U); /* Software Input On Field: Force input path of pad GPIO_B1_10 */
IOMUXC_SetPinMux(
IOMUXC_GPIO_B1_11_ENET_RX_ER, /* GPIO_B1_11 is configured as ENET_RX_ER */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_40_ENET_MDC, /* GPIO_EMC_40 is configured as ENET_MDC */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_41_ENET_MDIO, /* GPIO_EMC_41 is configured as ENET_MDIO */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 PAD functional properties : */
0xB0A9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_10_GPIO1_IO10, /* GPIO_AD_B0_10 PAD functional properties : */
0xB0A9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_04_ENET_RX_DATA00, /* GPIO_B1_04 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_05_ENET_RX_DATA01, /* GPIO_B1_05 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_06_ENET_RX_EN, /* GPIO_B1_06 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_07_ENET_TX_DATA00, /* GPIO_B1_07 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_08_ENET_TX_DATA01, /* GPIO_B1_08 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_09_ENET_TX_EN, /* GPIO_B1_09 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_10_ENET_REF_CLK, /* GPIO_B1_10 PAD functional properties : */
0x31u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/6
Speed Field: low(50MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Disabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B1_11_ENET_RX_ER, /* GPIO_B1_11 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_40_ENET_MDC, /* GPIO_EMC_40 PAD functional properties : */
0xB0E9u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: max(200MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_41_ENET_MDIO, /* GPIO_EMC_41 PAD functional properties : */
0xB829u); /* Slew Rate Field: Fast Slew Rate
Drive Strength Field: R0/5
Speed Field: low(50MHz)
Open Drain Enable Field: Open Drain Enabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Pull
Pull Up / Down Config. Field: 100K Ohm Pull Up
Hyst. Enable Field: Hysteresis Disabled */
BOARD_InitModuleClock();
IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1TxClkOutputDir, true);
GPIO_PinInit(GPIO1, 9, &gpio_config);
GPIO_PinInit(GPIO1, 10, &gpio_config);
/* pull up the ENET_INT before RESET. */
GPIO_WritePinOutput(GPIO1, 10, 1);
GPIO_WritePinOutput(GPIO1, 9, 0);
wait_ms(1);
GPIO_WritePinOutput(GPIO1, 9, 1);
}
/*******************************************************************************
* EOF
******************************************************************************/

View File

@ -0,0 +1,593 @@
/*
* Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
* Copyright (c) 2017 ARM Limited
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "cmsis_os.h"
#include "mbed_interface.h"
#include "mbed_assert.h"
#include "netsocket/nsapi_types.h"
#include "mbed_shared_queues.h"
#include "fsl_phy.h"
#include "imx_emac_config.h"
#include "imx_emac.h"
enet_handle_t g_handle;
// RX packet buffer pointers
emac_mem_buf_t *rx_buff[ENET_RX_RING_LEN];
// TX packet buffer pointers
emac_mem_buf_t *tx_buff[ENET_TX_RING_LEN];
// RX packet payload pointers
uint32_t *rx_ptr[ENET_RX_RING_LEN];
/********************************************************************************
* Internal data
********************************************************************************/
#define ENET_BuffSizeAlign(n) ENET_ALIGN(n, ENET_BUFF_ALIGNMENT)
#define ENET_ALIGN(x,align) ((unsigned int)((x) + ((align)-1)) & (unsigned int)(~(unsigned int)((align)- 1)))
extern "C" void kinetis_init_eth_hardware(void);
/* \brief Flags for worker thread */
#define FLAG_TX 1
#define FLAG_RX 2
/** \brief Driver thread priority */
#define THREAD_PRIORITY (osPriorityNormal)
#define PHY_TASK_PERIOD_MS 200
Kinetis_EMAC::Kinetis_EMAC() : xTXDCountSem(ENET_TX_RING_LEN, ENET_TX_RING_LEN), hwaddr()
{
}
static osThreadId_t create_new_thread(const char *threadName, void (*thread)(void *arg), void *arg, int stacksize, osPriority_t priority, mbed_rtos_storage_thread_t *thread_cb)
{
osThreadAttr_t attr = {0};
attr.name = threadName;
attr.stack_mem = malloc(stacksize);
attr.cb_mem = thread_cb;
attr.stack_size = stacksize;
attr.cb_size = sizeof(mbed_rtos_storage_thread_t);
attr.priority = priority;
return osThreadNew(thread, arg, &attr);
}
/********************************************************************************
* Buffer management
********************************************************************************/
/*
* This function will queue a new receive buffer
*/
static void update_read_buffer(uint8_t *buf)
{
if (buf != NULL) {
g_handle.rxBdCurrent[0]->buffer = buf;
}
/* Clears status. */
g_handle.rxBdCurrent[0]->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
g_handle.rxBdCurrent[0]->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increases the buffer descriptor to the next one. */
if (g_handle.rxBdCurrent[0]->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK) {
g_handle.rxBdCurrent[0] = g_handle.rxBdBase[0];
} else {
g_handle.rxBdCurrent[0]++;
}
/* Actives the receive buffer descriptor. */
ENET->RDAR = ENET_RDAR_RDAR_MASK;
}
/** \brief Free TX buffers that are complete
*/
void Kinetis_EMAC::tx_reclaim()
{
/* Get exclusive access */
TXLockMutex.lock();
// Traverse all descriptors, looking for the ones modified by the uDMA
while((tx_consume_index != tx_produce_index) &&
(!(g_handle.txBdDirty[0]->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))) {
memory_manager->free(tx_buff[tx_consume_index % ENET_TX_RING_LEN]);
if (g_handle.txBdDirty[0]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
g_handle.txBdDirty[0] = g_handle.txBdBase[0];
else
g_handle.txBdDirty[0]++;
tx_consume_index += 1;
xTXDCountSem.release();
}
/* Restore access */
TXLockMutex.unlock();
}
/** \brief Ethernet receive interrupt handler
*
* This function handles the receive interrupt.
*/
void Kinetis_EMAC::rx_isr()
{
if (thread) {
osThreadFlagsSet(thread, FLAG_RX);
}
}
void Kinetis_EMAC::tx_isr()
{
osThreadFlagsSet(thread, FLAG_TX);
}
void Kinetis_EMAC::ethernet_callback(ENET_Type *base, enet_handle_t *handle, enet_event_t event, void *param)
{
Kinetis_EMAC *enet = static_cast<Kinetis_EMAC *>(param);
switch (event)
{
case kENET_RxEvent:
enet->rx_isr();
break;
case kENET_TxEvent:
enet->tx_isr();
break;
default:
break;
}
}
/** \brief Low level init of the MAC and PHY.
*/
bool Kinetis_EMAC::low_level_init_successful()
{
uint8_t i;
uint32_t sysClock;
phy_speed_t phy_speed;
phy_duplex_t phy_duplex;
uint32_t phyAddr = 0;
enet_config_t config;
AT_NONCACHEABLE_SECTION_ALIGN(static enet_rx_bd_struct_t rx_desc_start_addr[ENET_RX_RING_LEN], ENET_BUFF_ALIGNMENT);
AT_NONCACHEABLE_SECTION_ALIGN(static enet_tx_bd_struct_t tx_desc_start_addr[ENET_TX_RING_LEN], ENET_BUFF_ALIGNMENT);
/* Create buffers for each receive BD */
for (i = 0; i < ENET_RX_RING_LEN; i++) {
rx_buff[i] = memory_manager->alloc_heap(ENET_ETH_MAX_FLEN, ENET_BUFF_ALIGNMENT);
if (NULL == rx_buff[i])
return false;
rx_ptr[i] = (uint32_t*)memory_manager->get_ptr(rx_buff[i]);
}
tx_consume_index = tx_produce_index = 0;
/* prepare the buffer configuration. */
enet_buffer_config_t buffCfg = {
ENET_RX_RING_LEN,
ENET_TX_RING_LEN,
ENET_ALIGN(ENET_ETH_MAX_FLEN, ENET_BUFF_ALIGNMENT),
0,
(volatile enet_rx_bd_struct_t *)rx_desc_start_addr,
(volatile enet_tx_bd_struct_t *)tx_desc_start_addr,
(uint8_t *)&rx_ptr,
NULL,
};
kinetis_init_eth_hardware();
sysClock = CLOCK_GetFreq(kCLOCK_CoreSysClk);
ENET_GetDefaultConfig(&config);
if (PHY_Init(ENET, phyAddr, sysClock) != kStatus_Success) {
return false;
}
/* Get link information from PHY */
PHY_GetLinkSpeedDuplex(ENET, phyAddr, &phy_speed, &phy_duplex);
/* Change the MII speed and duplex for actual link status. */
config.miiSpeed = (enet_mii_speed_t)phy_speed;
config.miiDuplex = (enet_mii_duplex_t)phy_duplex;
config.interrupt = kENET_RxFrameInterrupt | kENET_TxFrameInterrupt;
config.rxMaxFrameLen = ENET_ETH_MAX_FLEN;
config.macSpecialConfig = kENET_ControlFlowControlEnable;
config.txAccelerConfig = 0;
config.rxAccelerConfig = kENET_RxAccelMacCheckEnabled;
ENET_Init(ENET, &g_handle, &config, &buffCfg, hwaddr, sysClock);
#if defined(TOOLCHAIN_ARM)
#if defined(__OPTIMISE_TIME) && (__ARMCC_VERSION < 5060750)
/* Add multicast groups
work around for https://github.com/ARMmbed/mbed-os/issues/4372 */
ENET->GAUR = 0xFFFFFFFFu;
ENET->GALR = 0xFFFFFFFFu;
#endif
#endif
ENET_SetCallback(&g_handle, &Kinetis_EMAC::ethernet_callback, this);
ENET_ActiveRead(ENET);
return true;
}
/** \brief Allocates a emac_mem_buf_t and returns the data from the incoming packet.
*
* \param[in] idx index of packet to be read
* \return a emac_mem_buf_t filled with the received packet (including MAC header)
*/
emac_mem_buf_t *Kinetis_EMAC::low_level_input(int idx)
{
volatile enet_rx_bd_struct_t *bdPtr = g_handle.rxBdCurrent[0];
emac_mem_buf_t *p = NULL;
emac_mem_buf_t *temp_rxbuf = NULL;
uint32_t length = 0;
const uint16_t err_mask = ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK | ENET_BUFFDESCRIPTOR_RX_CRC_MASK |
ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK | ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK;
#ifdef LOCK_RX_THREAD
/* Get exclusive access */
TXLockMutex.lock();
#endif
/* Determine if a frame has been received */
if ((bdPtr->control & err_mask) != 0) {
/* Re-use the same buffer in case of error */
update_read_buffer(NULL);
} else {
/* A packet is waiting, get length */
length = bdPtr->length;
/* Zero-copy */
p = rx_buff[idx];
memory_manager->set_len(p, length);
/* Attempt to queue new buffer */
temp_rxbuf = memory_manager->alloc_heap(ENET_ETH_MAX_FLEN, ENET_BUFF_ALIGNMENT);
if (NULL == temp_rxbuf) {
/* Re-queue the same buffer */
update_read_buffer(NULL);
#ifdef LOCK_RX_THREAD
TXLockMutex.unlock();
#endif
return NULL;
}
rx_buff[idx] = temp_rxbuf;
rx_ptr[idx] = (uint32_t*)memory_manager->get_ptr(rx_buff[idx]);
update_read_buffer((uint8_t*)rx_ptr[idx]);
}
#ifdef LOCK_RX_THREAD
osMutexRelease(TXLockMutex);
#endif
return p;
}
/** \brief Attempt to read a packet from the EMAC interface.
*
* \param[in] idx index of packet to be read
*/
void Kinetis_EMAC::input(int idx)
{
emac_mem_buf_t *p;
/* move received packet into a new buf */
p = low_level_input(idx);
if (p == NULL) {
return;
}
emac_link_input_cb(p);
}
/** \brief Worker thread.
*
* Woken by thread flags to receive packets or clean up transmit
*
* \param[in] pvParameters pointer to the interface data
*/
void Kinetis_EMAC::thread_function(void* pvParameters)
{
struct Kinetis_EMAC *kinetis_enet = static_cast<Kinetis_EMAC *>(pvParameters);
for (;;) {
uint32_t flags = osThreadFlagsWait(FLAG_RX|FLAG_TX, osFlagsWaitAny, osWaitForever);
MBED_ASSERT(!(flags & osFlagsError));
if (flags & FLAG_RX) {
kinetis_enet->packet_rx();
}
if (flags & FLAG_TX) {
kinetis_enet->packet_tx();
}
}
}
/** \brief Packet reception task
*
* This task is called when a packet is received. It will
* pass the packet to the LWIP core.
*/
void Kinetis_EMAC::packet_rx()
{
static int idx = 0;
while ((g_handle.rxBdCurrent[0]->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK) == 0) {
input(idx);
idx = (idx + 1) % ENET_RX_RING_LEN;
}
}
/** \brief Transmit cleanup task
*
* This task is called when a transmit interrupt occurs and
* reclaims the buffer and descriptor used for the packet once
* the packet has been transferred.
*/
void Kinetis_EMAC::packet_tx()
{
tx_reclaim();
}
/** \brief Low level output of a packet. Never call this from an
* interrupt context, as it may block until TX descriptors
* become available.
*
* \param[in] buf the MAC packet to send (e.g. IP packet including MAC addresses and type)
* \return ERR_OK if the packet could be sent or an err_t value if the packet couldn't be sent
*/
bool Kinetis_EMAC::link_out(emac_mem_buf_t *buf)
{
// If buffer is chained or not aligned then make a contiguous aligned copy of it
if (memory_manager->get_next(buf) ||
reinterpret_cast<uint32_t>(memory_manager->get_ptr(buf)) % ENET_BUFF_ALIGNMENT) {
emac_mem_buf_t *copy_buf;
copy_buf = memory_manager->alloc_heap(memory_manager->get_total_len(buf), ENET_BUFF_ALIGNMENT);
if (NULL == copy_buf) {
memory_manager->free(buf);
return false;
}
// Copy to new buffer and free original
memory_manager->copy(copy_buf, buf);
memory_manager->free(buf);
buf = copy_buf;
}
/* Check if a descriptor is available for the transfer (wait 10ms before dropping the buffer) */
if (xTXDCountSem.wait(10) == 0) {
memory_manager->free(buf);
return false;
}
/* Get exclusive access */
TXLockMutex.lock();
/* Save the buffer so that it can be freed when transmit is done */
tx_buff[tx_produce_index % ENET_TX_RING_LEN] = buf;
tx_produce_index += 1;
/* Setup transfers */
g_handle.txBdCurrent[0]->buffer = static_cast<uint8_t *>(memory_manager->get_ptr(buf));
g_handle.txBdCurrent[0]->length = memory_manager->get_len(buf);
g_handle.txBdCurrent[0]->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
if (g_handle.txBdCurrent[0]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK) {
g_handle.txBdCurrent[0] = g_handle.txBdBase[0];
} else {
g_handle.txBdCurrent[0]++;
}
/* Active the transmit buffer descriptor. */
ENET->TDAR = ENET_TDAR_TDAR_MASK;
/* Restore access */
TXLockMutex.unlock();
return true;
}
/*******************************************************************************
* PHY task: monitor link
*******************************************************************************/
#define STATE_UNKNOWN (-1)
#define STATE_LINK_DOWN (0)
#define STATE_LINK_UP (1)
void Kinetis_EMAC::phy_task()
{
uint32_t phyAddr = BOARD_ENET_PHY_ADDR;
// Get current status
PHY_STATE crt_state;
bool connection_status;
PHY_GetLinkStatus(ENET, phyAddr, &connection_status);
if (connection_status) {
crt_state.connected = STATE_LINK_UP;
} else {
crt_state.connected = STATE_LINK_DOWN;
}
if (crt_state.connected == STATE_LINK_UP) {
if (prev_state.connected != STATE_LINK_UP) {
PHY_AutoNegotiation(ENET, phyAddr);
}
PHY_GetLinkSpeedDuplex(ENET, phyAddr, &crt_state.speed, &crt_state.duplex);
if (prev_state.connected != STATE_LINK_UP || crt_state.speed != prev_state.speed) {
/* Poke the registers*/
ENET_SetMII(ENET, (enet_mii_speed_t)crt_state.speed, (enet_mii_duplex_t)crt_state.duplex);
}
}
// Compare with previous state
if (crt_state.connected != prev_state.connected && emac_link_state_cb) {
emac_link_state_cb(crt_state.connected);
}
prev_state = crt_state;
}
bool Kinetis_EMAC::power_up()
{
/* Initialize the hardware */
if (!low_level_init_successful()) {
return false;
}
/* Worker thread */
thread = create_new_thread("Kinetis_EMAC_thread", &Kinetis_EMAC::thread_function, this, THREAD_STACKSIZE, THREAD_PRIORITY, &thread_cb);
/* Trigger thread to deal with any RX packets that arrived before thread was started */
rx_isr();
/* PHY monitoring task */
prev_state.connected = STATE_LINK_DOWN;
prev_state.speed = (phy_speed_t)STATE_UNKNOWN;
prev_state.duplex = (phy_duplex_t)STATE_UNKNOWN;
mbed::mbed_event_queue()->call(mbed::callback(this, &Kinetis_EMAC::phy_task));
/* Allow the PHY task to detect the initial link state and set up the proper flags */
osDelay(10);
phy_task_handle = mbed::mbed_event_queue()->call_every(PHY_TASK_PERIOD_MS, mbed::callback(this, &Kinetis_EMAC::phy_task));
return true;
}
uint32_t Kinetis_EMAC::get_mtu_size() const
{
return KINETIS_ETH_MTU_SIZE;
}
uint32_t Kinetis_EMAC::get_align_preference() const
{
return ENET_BUFF_ALIGNMENT;
}
void Kinetis_EMAC::get_ifname(char *name, uint8_t size) const
{
memcpy(name, KINETIS_ETH_IF_NAME, (size < sizeof(KINETIS_ETH_IF_NAME)) ? size : sizeof(KINETIS_ETH_IF_NAME));
}
uint8_t Kinetis_EMAC::get_hwaddr_size() const
{
return KINETIS_HWADDR_SIZE;
}
bool Kinetis_EMAC::get_hwaddr(uint8_t *addr) const
{
return false;
}
void Kinetis_EMAC::set_hwaddr(const uint8_t *addr)
{
memcpy(hwaddr, addr, sizeof hwaddr);
ENET_SetMacAddr(ENET, const_cast<uint8_t*>(addr));
}
void Kinetis_EMAC::set_link_input_cb(emac_link_input_cb_t input_cb)
{
emac_link_input_cb = input_cb;
}
void Kinetis_EMAC::set_link_state_cb(emac_link_state_change_cb_t state_cb)
{
emac_link_state_cb = state_cb;
}
void Kinetis_EMAC::add_multicast_group(const uint8_t *addr)
{
ENET_AddMulticastGroup(ENET, const_cast<uint8_t *>(addr));
}
void Kinetis_EMAC::remove_multicast_group(const uint8_t *addr)
{
// ENET HAL doesn't reference count - ENET_LeaveMulticastGroup just maps
// address to filter bit, and clears that bit, even if shared by other
// addresses. So don't attempt anything for now.
}
void Kinetis_EMAC::set_all_multicast(bool all)
{
if (all) {
ENET->GAUR = 0xFFFFFFFFu;
ENET->GALR = 0xFFFFFFFFu;
}
}
void Kinetis_EMAC::power_down()
{
/* No-op at this stage */
}
void Kinetis_EMAC::set_memory_manager(EMACMemoryManager &mem_mngr)
{
memory_manager = &mem_mngr;
}
Kinetis_EMAC &Kinetis_EMAC::get_instance() {
static Kinetis_EMAC emac;
return emac;
}
// Weak so a module can override
MBED_WEAK EMAC &EMAC::get_default_instance() {
return Kinetis_EMAC::get_instance();
}
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View File

@ -0,0 +1,170 @@
/*
* Copyright (c) 2017 ARM Limited. All rights reserved.
*/
#ifndef KINETIS_EMAC_H_
#define KINETIS_EMAC_H_
#include "EMAC.h"
#include "rtos/Semaphore.h"
#include "rtos/Mutex.h"
class Kinetis_EMAC : public EMAC {
public:
Kinetis_EMAC();
static Kinetis_EMAC &get_instance();
/**
* Return maximum transmission unit
*
* @return MTU in bytes
*/
virtual uint32_t get_mtu_size() const;
/**
* Gets memory buffer alignment preference
*
* Gets preferred memory buffer alignment of the Emac device. IP stack may or may not
* align link out memory buffer chains using the alignment.
*
* @return Memory alignment requirement in bytes
*/
virtual uint32_t get_align_preference() const;
/**
* Return interface name
*
* @param name Pointer to where the name should be written
* @param size Maximum number of character to copy
*/
virtual void get_ifname(char *name, uint8_t size) const;
/**
* Returns size of the underlying interface HW address size.
*
* @return HW address size in bytes
*/
virtual uint8_t get_hwaddr_size() const;
/**
* Return interface-supplied HW address
*
* Copies HW address to provided memory, @param addr has to be of correct size see @a get_hwaddr_size
*
* HW address need not be provided if this interface does not have its own HW
* address configuration; stack will choose address from central system
* configuration if the function returns false and does not write to addr.
*
* @param addr HW address for underlying interface
* @return true if HW address is available
*/
virtual bool get_hwaddr(uint8_t *addr) const;
/**
* Set HW address for interface
*
* Provided address has to be of correct size, see @a get_hwaddr_size
*
* Called to set the MAC address to actually use - if @a get_hwaddr is provided
* the stack would normally use that, but it could be overridden, eg for test
* purposes.
*
* @param addr Address to be set
*/
virtual void set_hwaddr(const uint8_t *addr);
/**
* Sends the packet over the link
*
* That can not be called from an interrupt context.
*
* @param buf Packet to be send
* @return True if the packet was send successfully, False otherwise
*/
virtual bool link_out(emac_mem_buf_t *buf);
/**
* Initializes the HW
*
* @return True on success, False in case of an error.
*/
virtual bool power_up();
/**
* Deinitializes the HW
*
*/
virtual void power_down();
/**
* Sets a callback that needs to be called for packets received for that interface
*
* @param input_cb Function to be register as a callback
*/
virtual void set_link_input_cb(emac_link_input_cb_t input_cb);
/**
* Sets a callback that needs to be called on link status changes for given interface
*
* @param state_cb Function to be register as a callback
*/
virtual void set_link_state_cb(emac_link_state_change_cb_t state_cb);
/** Add device to a multicast group
*
* @param address A multicast group hardware address
*/
virtual void add_multicast_group(const uint8_t *address);
/** Remove device from a multicast group
*
* @param address A multicast group hardware address
*/
virtual void remove_multicast_group(const uint8_t *address);
/** Request reception of all multicast packets
*
* @param all True to receive all multicasts
* False to receive only multicasts addressed to specified groups
*/
virtual void set_all_multicast(bool all);
/** Sets memory manager that is used to handle memory buffers
*
* @param mem_mngr Pointer to memory manager
*/
virtual void set_memory_manager(EMACMemoryManager &mem_mngr);
private:
bool low_level_init_successful();
void rx_isr();
void tx_isr();
void packet_rx();
void packet_tx();
void tx_reclaim();
void input(int idx);
emac_mem_buf_t *low_level_input(int idx);
static void thread_function(void* pvParameters);
void phy_task();
static void ethernet_callback(ENET_Type *base, enet_handle_t *handle, enet_event_t event, void *param);
mbed_rtos_storage_thread_t thread_cb;
osThreadId_t thread; /**< Processing thread */
rtos::Mutex TXLockMutex;/**< TX critical section mutex */
rtos::Semaphore xTXDCountSem; /**< TX free buffer counting semaphore */
uint8_t tx_consume_index, tx_produce_index; /**< TX buffers ring */
emac_link_input_cb_t emac_link_input_cb; /**< Callback for incoming data */
emac_link_state_change_cb_t emac_link_state_cb; /**< Link state change callback */
EMACMemoryManager *memory_manager; /**< Memory manager */
int phy_task_handle; /**< Handle for phy task event */
struct PHY_STATE {
int connected;
phy_speed_t speed;
phy_duplex_t duplex;
};
PHY_STATE prev_state;
uint8_t hwaddr[KINETIS_HWADDR_SIZE];
};
#endif /* KINETIS_EMAC_H_ */

View File

@ -0,0 +1,48 @@
/*
* Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef KINETIS_EMAC_CONFIG_H__
#define KINETIS_EMAC_CONFIG_H__
#include "fsl_enet.h"
#define ENET_RX_RING_LEN MBED_CONF_KINETIS_EMAC_RX_RING_LEN
#define ENET_TX_RING_LEN MBED_CONF_KINETIS_EMAC_TX_RING_LEN
#define ENET_ETH_MAX_FLEN (1522) // recommended size for a VLAN frame
#define KINETIS_HWADDR_SIZE (6)
#define KINETIS_ETH_MTU_SIZE 1500
#define KINETIS_ETH_IF_NAME "en"
#define THREAD_STACKSIZE 512
#endif // #define KINETIS_EMAC_CONFIG_H__

View File

@ -0,0 +1,7 @@
{
"name": "kinetis-emac",
"config": {
"rx-ring-len": 16,
"tx-ring-len": 8
}
}

View File

@ -20,6 +20,7 @@
#define DEVICE_ID_LENGTH 24 #define DEVICE_ID_LENGTH 24
#define BOARD_FLASH_SIZE (0x4000000U) #define BOARD_FLASH_SIZE (0x4000000U)
#define BOARD_ENET_PHY_ADDR (2)
#include "objects.h" #include "objects.h"

View File

@ -67,13 +67,10 @@ extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz) status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{ {
uint32_t bssReg;
uint32_t counter = PHY_TIMEOUT_COUNT; uint32_t counter = PHY_TIMEOUT_COUNT;
uint32_t idReg = 0; uint32_t idReg = 0;
status_t result = kStatus_Success; status_t result = kStatus_Success;
uint32_t instance = ENET_GetInstance(base); uint32_t instance = ENET_GetInstance(base);
uint32_t timeDelay;
uint32_t ctlReg = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */ /* Set SMI first. */
@ -94,7 +91,6 @@ status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
} }
/* Reset PHY. */ /* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK); result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (result == kStatus_Success) if (result == kStatus_Success)
{ {
@ -112,39 +108,49 @@ status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
return result; return result;
} }
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */ #endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
}
return result;
}
/* Set the negotiation. */ status_t PHY_AutoNegotiation(ENET_Type *base, uint32_t phyAddr)
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG, {
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK | status_t result = kStatus_Success;
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U)); uint32_t bssReg;
uint32_t counter = PHY_TIMEOUT_COUNT;
uint32_t timeDelay;
uint32_t ctlReg = 0;
/* Set the negotiation. */
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (result == kStatus_Success)
{
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (result == kStatus_Success) if (result == kStatus_Success)
{ {
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, /* Check auto negotiation complete. */
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK)); while (counter --)
if (result == kStatus_Success)
{ {
/* Check auto negotiation complete. */ result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
while (counter --) if ( result == kStatus_Success)
{ {
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg); PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
if ( result == kStatus_Success) if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
{ {
PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg); /* Wait a moment for Phy status stable. */
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK)) for (timeDelay = 0; timeDelay < PHY_TIMEOUT_COUNT; timeDelay ++)
{ {
/* Wait a moment for Phy status stable. */ __ASM("nop");
for (timeDelay = 0; timeDelay < PHY_TIMEOUT_COUNT; timeDelay ++)
{
__ASM("nop");
}
break;
} }
break;
} }
}
if (!counter) if (!counter)
{ {
return kStatus_PHY_AutoNegotiateFail; return kStatus_PHY_AutoNegotiateFail;
}
} }
} }
} }

View File

@ -149,6 +149,16 @@ extern "C" {
*/ */
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz); status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz);
/*!
* @brief Initiates auto negotiation.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @retval kStatus_Success PHY auto negotiation success
* @retval kStatus_PHY_AutoNegotiateFail PHY auto negotiate fail
*/
status_t PHY_AutoNegotiation(ENET_Type *base, uint32_t phyAddr);
/*! /*!
* @brief PHY Write function. This function write data over the SMI to * @brief PHY Write function. This function write data over the SMI to
* the specified PHY register. This function is called by all PHY interfaces. * the specified PHY register. This function is called by all PHY interfaces.

View File

@ -1,34 +1,8 @@
/* /*
* The Clear BSD License
* Copyright 2017 NXP * Copyright 2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_clock.h" #include "fsl_clock.h"
@ -36,15 +10,47 @@
#ifndef FSL_COMPONENT_ID #ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.clock" #define FSL_COMPONENT_ID "platform.drivers.clock"
#endif #endif
/*******************************************************************************
* Definitions
******************************************************************************/
/* To make full use of CM7 hardware FPU, use double instead of uint64_t in clock driver to
achieve better performance, it is depend on the IDE Floating point settings, if double precision is selected
in IDE, clock_64b_t will switch to double type automatically. only support IAR and MDK here */
#if __FPU_USED
#if ((defined(__ICCARM__)) || (defined(__GNUC__)))
#if (__ARMVFP__ >= __ARMFPV5__) && \
(__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
typedef double clock_64b_t;
#else
typedef uint64_t clock_64b_t;
#endif
#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
#if defined __TARGET_FPU_FPV5_D16
typedef double clock_64b_t;
#else
typedef uint64_t clock_64b_t;
#endif
#else
typedef uint64_t clock_64b_t;
#endif
#else
typedef uint64_t clock_64b_t;
#endif
/******************************************************************************* /*******************************************************************************
* Variables * Variables
******************************************************************************/ ******************************************************************************/
/* External XTAL (OSC) clock frequency. */ /* External XTAL (OSC) clock frequency. */
uint32_t g_xtalFreq; volatile uint32_t g_xtalFreq;
/* External RTC XTAL clock frequency. */ /* External RTC XTAL clock frequency. */
uint32_t g_rtcXtalFreq; volatile uint32_t g_rtcXtalFreq;
/******************************************************************************* /*******************************************************************************
* Prototypes * Prototypes
@ -127,6 +133,20 @@ static uint32_t CLOCK_GetPeriphClkFreq(void)
return freq; return freq;
} }
/*!
* brief Initialize the external 24MHz clock.
*
* This function supports two modes:
* 1. Use external crystal oscillator.
* 2. Bypass the external crystal oscillator, using input source clock directly.
*
* After this function, please call ref CLOCK_SetXtal0Freq to inform clock driver
* the external clock frequency.
*
* param bypassXtalOsc Pass in true to bypass the external crystal oscillator.
* note This device does not support bypass external crystal oscillator, so
* the input parameter should always be false.
*/
void CLOCK_InitExternalClk(bool bypassXtalOsc) void CLOCK_InitExternalClk(bool bypassXtalOsc)
{ {
/* This device does not support bypass XTAL OSC. */ /* This device does not support bypass XTAL OSC. */
@ -143,11 +163,26 @@ void CLOCK_InitExternalClk(bool bypassXtalOsc)
CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
} }
/*!
* brief Deinitialize the external 24MHz clock.
*
* This function disables the external 24MHz clock.
*
* After this function, please call ref CLOCK_SetXtal0Freq to set external clock
* frequency to 0.
*/
void CLOCK_DeinitExternalClk(void) void CLOCK_DeinitExternalClk(void)
{ {
CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */ CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
} }
/*!
* brief Switch the OSC.
*
* This function switches the OSC source for SoC.
*
* param osc OSC source to switch to.
*/
void CLOCK_SwitchOsc(clock_osc_t osc) void CLOCK_SwitchOsc(clock_osc_t osc)
{ {
if (osc == kCLOCK_RcOsc) if (osc == kCLOCK_RcOsc)
@ -156,16 +191,110 @@ void CLOCK_SwitchOsc(clock_osc_t osc)
XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK; XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
} }
/*!
* brief Initialize the RC oscillator 24MHz clock.
*/
void CLOCK_InitRcOsc24M(void) void CLOCK_InitRcOsc24M(void)
{ {
XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK; XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
} }
/*!
* brief Power down the RCOSC 24M clock.
*/
void CLOCK_DeinitRcOsc24M(void) void CLOCK_DeinitRcOsc24M(void)
{ {
XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK; XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
} }
/*!
* brief Gets the AHB clock frequency.
*
* return The AHB clock frequency value in hertz.
*/
uint32_t CLOCK_GetAhbFreq(void)
{
return CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
}
/*!
* brief Gets the SEMC clock frequency.
*
* return The SEMC clock frequency value in hertz.
*/
uint32_t CLOCK_GetSemcFreq(void)
{
uint32_t freq;
/* SEMC alternative clock ---> SEMC Clock */
if (CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK)
{
/* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
if (CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK)
{
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
}
/* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
else
{
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
}
}
/* Periph_clk ---> SEMC Clock */
else
{
freq = CLOCK_GetPeriphClkFreq();
}
freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
return freq;
}
/*!
* brief Gets the IPG clock frequency.
*
* return The IPG clock frequency value in hertz.
*/
uint32_t CLOCK_GetIpgFreq(void)
{
return CLOCK_GetAhbFreq() / (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
}
/*!
* brief Gets the PER clock frequency.
*
* return The PER clock frequency value in hertz.
*/
uint32_t CLOCK_GetPerClkFreq(void)
{
uint32_t freq;
/* Osc_clk ---> PER Clock*/
if (CCM->CSCMR1 & CCM_CSCMR1_PERCLK_CLK_SEL_MASK)
{
freq = CLOCK_GetOscFreq();
}
/* Periph_clk ---> AHB Clock ---> IPG Clock ---> PER Clock */
else
{
freq = CLOCK_GetFreq(kCLOCK_IpgClk);
}
freq /= (((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_PODF_MASK) >> CCM_CSCMR1_PERCLK_PODF_SHIFT) + 1U);
return freq;
}
/*!
* brief Gets the clock frequency for a specific clock name.
*
* This function checks the current clock configurations and then calculates
* the clock frequency for a specific clock name defined in clock_name_t.
*
* param clockName Clock names defined in clock_name_t
* return Clock frequency value in hertz
*/
uint32_t CLOCK_GetFreq(clock_name_t name) uint32_t CLOCK_GetFreq(clock_name_t name)
{ {
uint32_t freq; uint32_t freq;
@ -173,42 +302,20 @@ uint32_t CLOCK_GetFreq(clock_name_t name)
switch (name) switch (name)
{ {
case kCLOCK_CpuClk: case kCLOCK_CpuClk:
/* Periph_clk ---> AHB Clock */
case kCLOCK_AhbClk: case kCLOCK_AhbClk:
/* Periph_clk ---> AHB Clock */ freq = CLOCK_GetAhbFreq();
freq =
CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
break; break;
case kCLOCK_SemcClk: case kCLOCK_SemcClk:
/* SEMC alternative clock ---> SEMC Clock */ freq = CLOCK_GetSemcFreq();
if (CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK)
{
/* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
if (CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK)
{
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
}
/* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
else
{
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
}
}
/* Periph_clk ---> SEMC Clock */
else
{
freq = CLOCK_GetPeriphClkFreq();
}
freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
break; break;
case kCLOCK_IpgClk: case kCLOCK_IpgClk:
/* Periph_clk ---> AHB Clock ---> IPG Clock */ freq = CLOCK_GetIpgFreq();
freq = break;
CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
freq /= (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U); case kCLOCK_PerClk:
freq = CLOCK_GetPerClkFreq();
break; break;
case kCLOCK_OscClk: case kCLOCK_OscClk:
@ -273,6 +380,17 @@ uint32_t CLOCK_GetFreq(clock_name_t name)
return freq; return freq;
} }
/*! brief Enable USB HS clock.
*
* This function only enables the access to USB HS prepheral, upper layer
* should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
* clock to use USB HS.
*
* param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
* param freq USB HS does not care about the clock source, so this parameter is ignored.
* retval true The clock is set successfully.
* retval false The clock source is invalid to get proper USB HS clock.
*/
bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq) bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
{ {
CCM->CCGR6 |= CCM_CCGR6_CG0_MASK; CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
@ -287,6 +405,17 @@ bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
return true; return true;
} }
/*! brief Enable USB HS clock.
*
* This function only enables the access to USB HS prepheral, upper layer
* should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
* clock to use USB HS.
*
* param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
* param freq USB HS does not care about the clock source, so this parameter is ignored.
* retval true The clock is set successfully.
* retval false The clock source is invalid to get proper USB HS clock.
*/
bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq) bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
{ {
CCM->CCGR6 |= CCM_CCGR6_CG0_MASK; CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
@ -301,6 +430,15 @@ bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
return true; return true;
} }
/*! brief Enable USB HS PHY PLL clock.
*
* This function enables the internal 480MHz USB PHY PLL clock.
*
* param src USB HS PHY PLL clock source.
* param freq The frequency specified by src.
* retval true The clock is set successfully.
* retval false The clock source is invalid to get proper USB HS clock.
*/
bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq) bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{ {
const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U}; const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
@ -321,12 +459,23 @@ bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
return true; return true;
} }
/*! brief Disable USB HS PHY PLL clock.
*
* This function disables USB HS PHY PLL clock.
*/
void CLOCK_DisableUsbhs0PhyPllClock(void) void CLOCK_DisableUsbhs0PhyPllClock(void)
{ {
CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK; CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */ USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
} }
/*!
* brief Initialize the ARM PLL.
*
* This function initialize the ARM PLL with specific settings
*
* param config configuration to set to PLL.
*/
void CLOCK_InitArmPll(const clock_arm_pll_config_t *config) void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
{ {
/* Bypass PLL first */ /* Bypass PLL first */
@ -345,11 +494,21 @@ void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
CCM_ANALOG->PLL_ARM &= ~CCM_ANALOG_PLL_ARM_BYPASS_MASK; CCM_ANALOG->PLL_ARM &= ~CCM_ANALOG_PLL_ARM_BYPASS_MASK;
} }
/*!
* brief De-initialize the ARM PLL.
*/
void CLOCK_DeinitArmPll(void) void CLOCK_DeinitArmPll(void)
{ {
CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK; CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
} }
/*!
* brief Initialize the System PLL.
*
* This function initializes the System PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitSysPll(const clock_sys_pll_config_t *config) void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
{ {
/* Bypass PLL first */ /* Bypass PLL first */
@ -360,6 +519,15 @@ void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
(CCM_ANALOG->PLL_SYS & (~(CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK | CCM_ANALOG_PLL_SYS_POWERDOWN_MASK))) | (CCM_ANALOG->PLL_SYS & (~(CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK | CCM_ANALOG_PLL_SYS_POWERDOWN_MASK))) |
CCM_ANALOG_PLL_SYS_ENABLE_MASK | CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider); CCM_ANALOG_PLL_SYS_ENABLE_MASK | CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);
/* Initialize the fractional mode */
CCM_ANALOG->PLL_SYS_NUM = CCM_ANALOG_PLL_SYS_NUM_A(config->numerator);
CCM_ANALOG->PLL_SYS_DENOM = CCM_ANALOG_PLL_SYS_DENOM_B(config->denominator);
/* Initialize the spread spectrum mode */
CCM_ANALOG->PLL_SYS_SS = CCM_ANALOG_PLL_SYS_SS_STEP(config->ss_step) |
CCM_ANALOG_PLL_SYS_SS_ENABLE(config->ss_enable) |
CCM_ANALOG_PLL_SYS_SS_STOP(config->ss_stop);
while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0) while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0)
{ {
} }
@ -368,11 +536,21 @@ void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
CCM_ANALOG->PLL_SYS &= ~CCM_ANALOG_PLL_SYS_BYPASS_MASK; CCM_ANALOG->PLL_SYS &= ~CCM_ANALOG_PLL_SYS_BYPASS_MASK;
} }
/*!
* brief De-initialize the System PLL.
*/
void CLOCK_DeinitSysPll(void) void CLOCK_DeinitSysPll(void)
{ {
CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK; CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
} }
/*!
* brief Initialize the USB1 PLL.
*
* This function initializes the USB1 PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config) void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
{ {
/* Bypass PLL first */ /* Bypass PLL first */
@ -391,11 +569,21 @@ void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK; CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK;
} }
/*!
* brief Deinitialize the USB1 PLL.
*/
void CLOCK_DeinitUsb1Pll(void) void CLOCK_DeinitUsb1Pll(void)
{ {
CCM_ANALOG->PLL_USB1 = 0U; CCM_ANALOG->PLL_USB1 = 0U;
} }
/*!
* brief Initialize the USB2 PLL.
*
* This function initializes the USB2 PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config) void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
{ {
/* Bypass PLL first */ /* Bypass PLL first */
@ -414,11 +602,21 @@ void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_BYPASS_MASK; CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_BYPASS_MASK;
} }
/*!
* brief Deinitialize the USB2 PLL.
*/
void CLOCK_DeinitUsb2Pll(void) void CLOCK_DeinitUsb2Pll(void)
{ {
CCM_ANALOG->PLL_USB2 = 0U; CCM_ANALOG->PLL_USB2 = 0U;
} }
/*!
* brief Initializes the Audio PLL.
*
* This function initializes the Audio PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config) void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
{ {
uint32_t pllAudio; uint32_t pllAudio;
@ -491,11 +689,21 @@ void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
CCM_ANALOG->PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS_MASK; CCM_ANALOG->PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS_MASK;
} }
/*!
* brief De-initialize the Audio PLL.
*/
void CLOCK_DeinitAudioPll(void) void CLOCK_DeinitAudioPll(void)
{ {
CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK; CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
} }
/*!
* brief Initialize the video PLL.
*
* This function configures the Video PLL with specific settings
*
* param config configuration to set to PLL.
*/
void CLOCK_InitVideoPll(const clock_video_pll_config_t *config) void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
{ {
uint32_t pllVideo; uint32_t pllVideo;
@ -567,11 +775,21 @@ void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
CCM_ANALOG->PLL_VIDEO &= ~CCM_ANALOG_PLL_VIDEO_BYPASS_MASK; CCM_ANALOG->PLL_VIDEO &= ~CCM_ANALOG_PLL_VIDEO_BYPASS_MASK;
} }
/*!
* brief De-initialize the Video PLL.
*/
void CLOCK_DeinitVideoPll(void) void CLOCK_DeinitVideoPll(void)
{ {
CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK; CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
} }
/*!
* brief Initialize the ENET PLL.
*
* This function initializes the ENET PLL with specific settings.
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config) void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
{ {
uint32_t enet_pll = CCM_ANALOG_PLL_ENET_DIV_SELECT(config->loopDivider); uint32_t enet_pll = CCM_ANALOG_PLL_ENET_DIV_SELECT(config->loopDivider);
@ -602,16 +820,29 @@ void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK; CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK;
} }
/*!
* brief Deinitialize the ENET PLL.
*
* This function disables the ENET PLL.
*/
void CLOCK_DeinitEnetPll(void) void CLOCK_DeinitEnetPll(void)
{ {
CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK; CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
} }
/*!
* brief Get current PLL output frequency.
*
* This function get current output frequency of specific PLL
*
* param pll pll name to get frequency.
* return The PLL output frequency in hertz.
*/
uint32_t CLOCK_GetPllFreq(clock_pll_t pll) uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
{ {
uint32_t freq; uint32_t freq;
uint32_t divSelect; uint32_t divSelect;
uint64_t freqTmp; clock_64b_t freqTmp;
const uint32_t enetRefClkFreq[] = { const uint32_t enetRefClkFreq[] = {
25000000U, /* 25M */ 25000000U, /* 25M */
@ -644,8 +875,8 @@ uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
break; break;
case kCLOCK_PllSys: case kCLOCK_PllSys:
/* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */ /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
freqTmp = freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_SYS_NUM))) /
((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_SYS_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_SYS_DENOM)); ((clock_64b_t)(CCM_ANALOG->PLL_SYS_DENOM));
if (CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) if (CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK)
{ {
@ -668,8 +899,8 @@ uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
divSelect = divSelect =
(CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT; (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;
freqTmp = freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_NUM))) /
((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_AUDIO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_AUDIO_DENOM)); ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_DENOM));
freq = freq * divSelect + (uint32_t)freqTmp; freq = freq * divSelect + (uint32_t)freqTmp;
@ -723,8 +954,8 @@ uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
divSelect = divSelect =
(CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT; (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;
freqTmp = freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_NUM))) /
((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_VIDEO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_VIDEO_DENOM)); ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_DENOM));
freq = freq * divSelect + (uint32_t)freqTmp; freq = freq * divSelect + (uint32_t)freqTmp;
@ -794,6 +1025,16 @@ uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
return freq; return freq;
} }
/*!
* brief Initialize the System PLL PFD.
*
* This function initializes the System PLL PFD. During new value setting,
* the clock output is disabled to prevent glitch.
*
* param pfd Which PFD clock to enable.
* param pfdFrac The PFD FRAC value.
* note It is recommended that PFD settings are kept between 12-35.
*/
void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac) void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
{ {
uint32_t pfdIndex = (uint32_t)pfd; uint32_t pfdIndex = (uint32_t)pfd;
@ -809,11 +1050,28 @@ void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8 * pfdIndex)); CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
} }
/*!
* brief De-initialize the System PLL PFD.
*
* This function disables the System PLL PFD.
*
* param pfd Which PFD clock to disable.
*/
void CLOCK_DeinitSysPfd(clock_pfd_t pfd) void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
{ {
CCM_ANALOG->PFD_528 |= CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfd); CCM_ANALOG->PFD_528 |= CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfd);
} }
/*!
* brief Initialize the USB1 PLL PFD.
*
* This function initializes the USB1 PLL PFD. During new value setting,
* the clock output is disabled to prevent glitch.
*
* param pfd Which PFD clock to enable.
* param pfdFrac The PFD FRAC value.
* note It is recommended that PFD settings are kept between 12-35.
*/
void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac) void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
{ {
uint32_t pfdIndex = (uint32_t)pfd; uint32_t pfdIndex = (uint32_t)pfd;
@ -829,11 +1087,26 @@ void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8 * pfdIndex)); CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
} }
/*!
* brief De-initialize the USB1 PLL PFD.
*
* This function disables the USB1 PLL PFD.
*
* param pfd Which PFD clock to disable.
*/
void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd) void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
{ {
CCM_ANALOG->PFD_480 |= CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfd); CCM_ANALOG->PFD_480 |= CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfd);
} }
/*!
* brief Get current System PLL PFD output frequency.
*
* This function get current output frequency of specific System PLL PFD
*
* param pfd pfd name to get frequency.
* return The PFD output frequency in hertz.
*/
uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd) uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
{ {
uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys); uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
@ -865,6 +1138,14 @@ uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
return freq; return freq;
} }
/*!
* brief Get current USB1 PLL PFD output frequency.
*
* This function get current output frequency of specific USB1 PLL PFD
*
* param pfd pfd name to get frequency.
* return The PFD output frequency in hertz.
*/
uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd) uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
{ {
uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1); uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
@ -896,6 +1177,15 @@ uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
return freq; return freq;
} }
/*! brief Enable USB HS PHY PLL clock.
*
* This function enables the internal 480MHz USB PHY PLL clock.
*
* param src USB HS PHY PLL clock source.
* param freq The frequency specified by src.
* retval true The clock is set successfully.
* retval false The clock source is invalid to get proper USB HS clock.
*/
bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq) bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{ {
const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U}; const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
@ -910,6 +1200,10 @@ bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
return true; return true;
} }
/*! brief Disable USB HS PHY PLL clock.
*
* This function disables USB HS PHY PLL clock.
*/
void CLOCK_DisableUsbhs1PhyPllClock(void) void CLOCK_DisableUsbhs1PhyPllClock(void)
{ {
CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK; CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK;

View File

@ -1,34 +1,8 @@
/* /*
* The Clear BSD License
* Copyright 2017 NXP * Copyright 2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#ifndef _FSL_CLOCK_H_ #ifndef _FSL_CLOCK_H_
@ -49,7 +23,7 @@
* *
* When set to 0, peripheral drivers will enable clock in initialize function * When set to 0, peripheral drivers will enable clock in initialize function
* and disable clock in de-initialize function. When set to 1, peripheral * and disable clock in de-initialize function. When set to 1, peripheral
* driver will not control the clock, application could contol the clock out of * driver will not control the clock, application could control the clock out of
* the driver. * the driver.
* *
* @note All drivers share this feature switcher. If it is set to 1, application * @note All drivers share this feature switcher. If it is set to 1, application
@ -65,18 +39,47 @@
/*! @name Driver version */ /*! @name Driver version */
/*@{*/ /*@{*/
/*! @brief CLOCK driver version 2.1.2. */ /*! @brief CLOCK driver version 2.1.5. */
#define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 1, 2)) #define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 1, 5))
/* analog pll definition */ /* analog pll definition */
#define CCM_ANALOG_PLL_BYPASS_SHIFT (16U) #define CCM_ANALOG_PLL_BYPASS_SHIFT (16U)
#define CCM_ANALOG_PLL_BYPASS_CLK_SRC_MASK (0xC000U) #define CCM_ANALOG_PLL_BYPASS_CLK_SRC_MASK (0xC000U)
#define CCM_ANALOG_PLL_BYPASS_CLK_SRC_SHIFT (14U) #define CCM_ANALOG_PLL_BYPASS_CLK_SRC_SHIFT (14U)
/*@}*/ /*@}*/
#define CCM_TUPLE(reg, shift, mask, busyShift) \
((((uint32_t)(&((CCM_Type *)0U)->reg)) & 0xFFU) | ((shift) << 8U) | ((((mask) >> (shift)) & 0x1FFFU) << 13U) | \ /*!
((busyShift) << 26U)) * @brief CCM registers offset.
*/
#define CCSR_OFFSET 0x0C
#define CBCDR_OFFSET 0x14
#define CBCMR_OFFSET 0x18
#define CSCMR1_OFFSET 0x1C
#define CSCMR2_OFFSET 0x20
#define CSCDR1_OFFSET 0x24
#define CDCDR_OFFSET 0x30
#define CSCDR2_OFFSET 0x38
#define CSCDR3_OFFSET 0x3C
#define CACRR_OFFSET 0x10
#define CS1CDR_OFFSET 0x28
#define CS2CDR_OFFSET 0x2C
/*!
* @brief CCM Analog registers offset.
*/
#define PLL_ARM_OFFSET 0x00
#define PLL_SYS_OFFSET 0x30
#define PLL_USB1_OFFSET 0x10
#define PLL_AUDIO_OFFSET 0x70
#define PLL_VIDEO_OFFSET 0xA0
#define PLL_ENET_OFFSET 0xE0
#define PLL_USB2_OFFSET 0x20
#define CCM_TUPLE(reg, shift, mask, busyShift) \
(int)((reg & 0xFFU) | ((shift) << 8U) | \
((((mask) >> (shift)) & 0x1FFFU) << 13U) | ((busyShift) << 26U))
#define CCM_TUPLE_REG(base, tuple) (*((volatile uint32_t *)(((uint32_t)(base)) + ((tuple)&0xFFU)))) #define CCM_TUPLE_REG(base, tuple) (*((volatile uint32_t *)(((uint32_t)(base)) + ((tuple)&0xFFU))))
#define CCM_TUPLE_SHIFT(tuple) (((tuple) >> 8U) & 0x1FU) #define CCM_TUPLE_SHIFT(tuple) (((tuple) >> 8U) & 0x1FU)
#define CCM_TUPLE_MASK(tuple) ((uint32_t)((((tuple) >> 13U) & 0x1FFFU) << ((((tuple) >> 8U) & 0x1FU)))) #define CCM_TUPLE_MASK(tuple) ((uint32_t)((((tuple) >> 13U) & 0x1FFFU) << ((((tuple) >> 8U) & 0x1FU))))
@ -87,7 +90,7 @@
/*! /*!
* @brief CCM ANALOG tuple macros to map corresponding registers and bit fields. * @brief CCM ANALOG tuple macros to map corresponding registers and bit fields.
*/ */
#define CCM_ANALOG_TUPLE(reg, shift) ((((uint32_t)(&((CCM_ANALOG_Type *)0U)->reg) & 0xFFFU) << 16U) | (shift)) #define CCM_ANALOG_TUPLE(reg, shift) (((reg & 0xFFFU) << 16U) | (shift))
#define CCM_ANALOG_TUPLE_SHIFT(tuple) (((uint32_t)tuple) & 0x1FU) #define CCM_ANALOG_TUPLE_SHIFT(tuple) (((uint32_t)tuple) & 0x1FU)
#define CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off) \ #define CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off) \
(*((volatile uint32_t *)((uint32_t)base + (((uint32_t)tuple >> 16U) & 0xFFFU) + off))) (*((volatile uint32_t *)((uint32_t)base + (((uint32_t)tuple >> 16U) & 0xFFFU) + off)))
@ -108,14 +111,14 @@
* CLOCK_SetXtalFreq(240000000); // Set the XTAL value to clock driver. * CLOCK_SetXtalFreq(240000000); // Set the XTAL value to clock driver.
* @endcode * @endcode
*/ */
extern uint32_t g_xtalFreq; extern volatile uint32_t g_xtalFreq;
/*! @brief External RTC XTAL (32K OSC) clock frequency. /*! @brief External RTC XTAL (32K OSC) clock frequency.
* *
* The RTC XTAL (32K OSC) clock frequency in Hz, when the clock is setup, use the * The RTC XTAL (32K OSC) clock frequency in Hz, when the clock is setup, use the
* function CLOCK_SetRtcXtalFreq to set the value in to clock driver. * function CLOCK_SetRtcXtalFreq to set the value in to clock driver.
*/ */
extern uint32_t g_rtcXtalFreq; extern volatile uint32_t g_rtcXtalFreq;
/* For compatible with other platforms */ /* For compatible with other platforms */
#define CLOCK_SetXtal0Freq CLOCK_SetXtalFreq #define CLOCK_SetXtal0Freq CLOCK_SetXtalFreq
@ -394,31 +397,32 @@ typedef enum _clock_name
kCLOCK_AhbClk = 0x1U, /*!< AHB clock */ kCLOCK_AhbClk = 0x1U, /*!< AHB clock */
kCLOCK_SemcClk = 0x2U, /*!< SEMC clock */ kCLOCK_SemcClk = 0x2U, /*!< SEMC clock */
kCLOCK_IpgClk = 0x3U, /*!< IPG clock */ kCLOCK_IpgClk = 0x3U, /*!< IPG clock */
kCLOCK_PerClk = 0x4U, /*!< PER clock */
kCLOCK_OscClk = 0x4U, /*!< OSC clock selected by PMU_LOWPWR_CTRL[OSC_SEL]. */ kCLOCK_OscClk = 0x5U, /*!< OSC clock selected by PMU_LOWPWR_CTRL[OSC_SEL]. */
kCLOCK_RtcClk = 0x5U, /*!< RTC clock. (RTCCLK) */ kCLOCK_RtcClk = 0x6U, /*!< RTC clock. (RTCCLK) */
kCLOCK_ArmPllClk = 0x6U, /*!< ARMPLLCLK. */ kCLOCK_ArmPllClk = 0x7U, /*!< ARMPLLCLK. */
kCLOCK_Usb1PllClk = 0x7U, /*!< USB1PLLCLK. */ kCLOCK_Usb1PllClk = 0x8U, /*!< USB1PLLCLK. */
kCLOCK_Usb1PllPfd0Clk = 0x8U, /*!< USB1PLLPDF0CLK. */ kCLOCK_Usb1PllPfd0Clk = 0x9U, /*!< USB1PLLPDF0CLK. */
kCLOCK_Usb1PllPfd1Clk = 0x9U, /*!< USB1PLLPFD1CLK. */ kCLOCK_Usb1PllPfd1Clk = 0xAU, /*!< USB1PLLPFD1CLK. */
kCLOCK_Usb1PllPfd2Clk = 0xAU, /*!< USB1PLLPFD2CLK. */ kCLOCK_Usb1PllPfd2Clk = 0xBU, /*!< USB1PLLPFD2CLK. */
kCLOCK_Usb1PllPfd3Clk = 0xBU, /*!< USB1PLLPFD3CLK. */ kCLOCK_Usb1PllPfd3Clk = 0xCU, /*!< USB1PLLPFD3CLK. */
kCLOCK_Usb2PllClk = 0xCU, /*!< USB2PLLCLK. */ kCLOCK_Usb2PllClk = 0xDU, /*!< USB2PLLCLK. */
kCLOCK_SysPllClk = 0xDU, /*!< SYSPLLCLK. */ kCLOCK_SysPllClk = 0xEU, /*!< SYSPLLCLK. */
kCLOCK_SysPllPfd0Clk = 0xEU, /*!< SYSPLLPDF0CLK. */ kCLOCK_SysPllPfd0Clk = 0xFU, /*!< SYSPLLPDF0CLK. */
kCLOCK_SysPllPfd1Clk = 0xFU, /*!< SYSPLLPFD1CLK. */ kCLOCK_SysPllPfd1Clk = 0x10U, /*!< SYSPLLPFD1CLK. */
kCLOCK_SysPllPfd2Clk = 0x10U, /*!< SYSPLLPFD2CLK. */ kCLOCK_SysPllPfd2Clk = 0x11U, /*!< SYSPLLPFD2CLK. */
kCLOCK_SysPllPfd3Clk = 0x11U, /*!< SYSPLLPFD3CLK. */ kCLOCK_SysPllPfd3Clk = 0x12U, /*!< SYSPLLPFD3CLK. */
kCLOCK_EnetPll0Clk = 0x12U, /*!< Enet PLLCLK ref_enetpll0. */ kCLOCK_EnetPll0Clk = 0x13U, /*!< Enet PLLCLK ref_enetpll0. */
kCLOCK_EnetPll1Clk = 0x13U, /*!< Enet PLLCLK ref_enetpll1. */ kCLOCK_EnetPll1Clk = 0x14U, /*!< Enet PLLCLK ref_enetpll1. */
kCLOCK_AudioPllClk = 0x14U, /*!< Audio PLLCLK. */ kCLOCK_AudioPllClk = 0x15U, /*!< Audio PLLCLK. */
kCLOCK_VideoPllClk = 0x15U, /*!< Video PLLCLK. */ kCLOCK_VideoPllClk = 0x16U, /*!< Video PLLCLK. */
} clock_name_t; } clock_name_t;
#define kCLOCK_CoreSysClk kCLOCK_CpuClk /*!< For compatible with other platforms without CCM. */ #define kCLOCK_CoreSysClk kCLOCK_CpuClk /*!< For compatible with other platforms without CCM. */
@ -591,84 +595,84 @@ typedef enum _clock_mode_t
*/ */
typedef enum _clock_mux typedef enum _clock_mux
{ {
kCLOCK_Pll3SwMux = CCM_TUPLE(CCSR, kCLOCK_Pll3SwMux = CCM_TUPLE(CCSR_OFFSET,
CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT, CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT,
CCM_CCSR_PLL3_SW_CLK_SEL_MASK, CCM_CCSR_PLL3_SW_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< pll3_sw_clk mux name */ CCM_NO_BUSY_WAIT), /*!< pll3_sw_clk mux name */
kCLOCK_PeriphMux = CCM_TUPLE(CBCDR, kCLOCK_PeriphMux = CCM_TUPLE(CBCDR_OFFSET,
CCM_CBCDR_PERIPH_CLK_SEL_SHIFT, CCM_CBCDR_PERIPH_CLK_SEL_SHIFT,
CCM_CBCDR_PERIPH_CLK_SEL_MASK, CCM_CBCDR_PERIPH_CLK_SEL_MASK,
CCM_CDHIPR_PERIPH_CLK_SEL_BUSY_SHIFT), /*!< periph mux name */ CCM_CDHIPR_PERIPH_CLK_SEL_BUSY_SHIFT), /*!< periph mux name */
kCLOCK_SemcAltMux = CCM_TUPLE(CBCDR, kCLOCK_SemcAltMux = CCM_TUPLE(CBCDR_OFFSET,
CCM_CBCDR_SEMC_ALT_CLK_SEL_SHIFT, CCM_CBCDR_SEMC_ALT_CLK_SEL_SHIFT,
CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK, CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< semc mux name */ CCM_NO_BUSY_WAIT), /*!< semc mux name */
kCLOCK_SemcMux = CCM_TUPLE( kCLOCK_SemcMux = CCM_TUPLE(
CBCDR, CCM_CBCDR_SEMC_CLK_SEL_SHIFT, CCM_CBCDR_SEMC_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< semc mux name */ CBCDR_OFFSET, CCM_CBCDR_SEMC_CLK_SEL_SHIFT, CCM_CBCDR_SEMC_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< semc mux name */
kCLOCK_PrePeriphMux = CCM_TUPLE(CBCMR, kCLOCK_PrePeriphMux = CCM_TUPLE(CBCMR_OFFSET,
CCM_CBCMR_PRE_PERIPH_CLK_SEL_SHIFT, CCM_CBCMR_PRE_PERIPH_CLK_SEL_SHIFT,
CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK, CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< pre-periph mux name */ CCM_NO_BUSY_WAIT), /*!< pre-periph mux name */
kCLOCK_TraceMux = CCM_TUPLE( kCLOCK_TraceMux = CCM_TUPLE(
CBCMR, CCM_CBCMR_TRACE_CLK_SEL_SHIFT, CCM_CBCMR_TRACE_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< trace mux name */ CBCMR_OFFSET, CCM_CBCMR_TRACE_CLK_SEL_SHIFT, CCM_CBCMR_TRACE_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< trace mux name */
kCLOCK_PeriphClk2Mux = CCM_TUPLE(CBCMR, kCLOCK_PeriphClk2Mux = CCM_TUPLE(CBCMR_OFFSET,
CCM_CBCMR_PERIPH_CLK2_SEL_SHIFT, CCM_CBCMR_PERIPH_CLK2_SEL_SHIFT,
CCM_CBCMR_PERIPH_CLK2_SEL_MASK, CCM_CBCMR_PERIPH_CLK2_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< periph clock2 mux name */ CCM_NO_BUSY_WAIT), /*!< periph clock2 mux name */
kCLOCK_LpspiMux = CCM_TUPLE( kCLOCK_LpspiMux = CCM_TUPLE(
CBCMR, CCM_CBCMR_LPSPI_CLK_SEL_SHIFT, CCM_CBCMR_LPSPI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lpspi mux name */ CBCMR_OFFSET, CCM_CBCMR_LPSPI_CLK_SEL_SHIFT, CCM_CBCMR_LPSPI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lpspi mux name */
kCLOCK_FlexspiMux = CCM_TUPLE(CSCMR1, kCLOCK_FlexspiMux = CCM_TUPLE(CSCMR1_OFFSET,
CCM_CSCMR1_FLEXSPI_CLK_SEL_SHIFT, CCM_CSCMR1_FLEXSPI_CLK_SEL_SHIFT,
CCM_CSCMR1_FLEXSPI_CLK_SEL_MASK, CCM_CSCMR1_FLEXSPI_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< flexspi mux name */ CCM_NO_BUSY_WAIT), /*!< flexspi mux name */
kCLOCK_Usdhc2Mux = CCM_TUPLE(CSCMR1, kCLOCK_Usdhc2Mux = CCM_TUPLE(CSCMR1_OFFSET,
CCM_CSCMR1_USDHC2_CLK_SEL_SHIFT, CCM_CSCMR1_USDHC2_CLK_SEL_SHIFT,
CCM_CSCMR1_USDHC2_CLK_SEL_MASK, CCM_CSCMR1_USDHC2_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< usdhc2 mux name */ CCM_NO_BUSY_WAIT), /*!< usdhc2 mux name */
kCLOCK_Usdhc1Mux = CCM_TUPLE(CSCMR1, kCLOCK_Usdhc1Mux = CCM_TUPLE(CSCMR1_OFFSET,
CCM_CSCMR1_USDHC1_CLK_SEL_SHIFT, CCM_CSCMR1_USDHC1_CLK_SEL_SHIFT,
CCM_CSCMR1_USDHC1_CLK_SEL_MASK, CCM_CSCMR1_USDHC1_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< usdhc1 mux name */ CCM_NO_BUSY_WAIT), /*!< usdhc1 mux name */
kCLOCK_Sai3Mux = CCM_TUPLE( kCLOCK_Sai3Mux = CCM_TUPLE(
CSCMR1, CCM_CSCMR1_SAI3_CLK_SEL_SHIFT, CCM_CSCMR1_SAI3_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 mux name */ CSCMR1_OFFSET, CCM_CSCMR1_SAI3_CLK_SEL_SHIFT, CCM_CSCMR1_SAI3_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 mux name */
kCLOCK_Sai2Mux = CCM_TUPLE( kCLOCK_Sai2Mux = CCM_TUPLE(
CSCMR1, CCM_CSCMR1_SAI2_CLK_SEL_SHIFT, CCM_CSCMR1_SAI2_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 mux name */ CSCMR1_OFFSET, CCM_CSCMR1_SAI2_CLK_SEL_SHIFT, CCM_CSCMR1_SAI2_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 mux name */
kCLOCK_Sai1Mux = CCM_TUPLE( kCLOCK_Sai1Mux = CCM_TUPLE(
CSCMR1, CCM_CSCMR1_SAI1_CLK_SEL_SHIFT, CCM_CSCMR1_SAI1_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 mux name */ CSCMR1_OFFSET, CCM_CSCMR1_SAI1_CLK_SEL_SHIFT, CCM_CSCMR1_SAI1_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 mux name */
kCLOCK_PerclkMux = CCM_TUPLE(CSCMR1, kCLOCK_PerclkMux = CCM_TUPLE(CSCMR1_OFFSET,
CCM_CSCMR1_PERCLK_CLK_SEL_SHIFT, CCM_CSCMR1_PERCLK_CLK_SEL_SHIFT,
CCM_CSCMR1_PERCLK_CLK_SEL_MASK, CCM_CSCMR1_PERCLK_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< perclk mux name */ CCM_NO_BUSY_WAIT), /*!< perclk mux name */
kCLOCK_Flexio2Mux = CCM_TUPLE(CSCMR2, kCLOCK_Flexio2Mux = CCM_TUPLE(CSCMR2_OFFSET,
CCM_CSCMR2_FLEXIO2_CLK_SEL_SHIFT, CCM_CSCMR2_FLEXIO2_CLK_SEL_SHIFT,
CCM_CSCMR2_FLEXIO2_CLK_SEL_MASK, CCM_CSCMR2_FLEXIO2_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< flexio2 mux name */ CCM_NO_BUSY_WAIT), /*!< flexio2 mux name */
kCLOCK_CanMux = CCM_TUPLE( kCLOCK_CanMux = CCM_TUPLE(
CSCMR2, CCM_CSCMR2_CAN_CLK_SEL_SHIFT, CCM_CSCMR2_CAN_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< can mux name */ CSCMR2_OFFSET, CCM_CSCMR2_CAN_CLK_SEL_SHIFT, CCM_CSCMR2_CAN_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< can mux name */
kCLOCK_UartMux = CCM_TUPLE( kCLOCK_UartMux = CCM_TUPLE(
CSCDR1, CCM_CSCDR1_UART_CLK_SEL_SHIFT, CCM_CSCDR1_UART_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< uart mux name */ CSCDR1_OFFSET, CCM_CSCDR1_UART_CLK_SEL_SHIFT, CCM_CSCDR1_UART_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< uart mux name */
kCLOCK_SpdifMux = CCM_TUPLE( kCLOCK_SpdifMux = CCM_TUPLE(
CDCDR, CCM_CDCDR_SPDIF0_CLK_SEL_SHIFT, CCM_CDCDR_SPDIF0_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< spdif mux name */ CDCDR_OFFSET, CCM_CDCDR_SPDIF0_CLK_SEL_SHIFT, CCM_CDCDR_SPDIF0_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< spdif mux name */
kCLOCK_Flexio1Mux = CCM_TUPLE(CDCDR, kCLOCK_Flexio1Mux = CCM_TUPLE(CDCDR_OFFSET,
CCM_CDCDR_FLEXIO1_CLK_SEL_SHIFT, CCM_CDCDR_FLEXIO1_CLK_SEL_SHIFT,
CCM_CDCDR_FLEXIO1_CLK_SEL_MASK, CCM_CDCDR_FLEXIO1_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< flexio1 mux name */ CCM_NO_BUSY_WAIT), /*!< flexio1 mux name */
kCLOCK_Lpi2cMux = CCM_TUPLE( kCLOCK_Lpi2cMux = CCM_TUPLE(
CSCDR2, CCM_CSCDR2_LPI2C_CLK_SEL_SHIFT, CCM_CSCDR2_LPI2C_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lpi2c mux name */ CSCDR2_OFFSET, CCM_CSCDR2_LPI2C_CLK_SEL_SHIFT, CCM_CSCDR2_LPI2C_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lpi2c mux name */
kCLOCK_LcdifPreMux = CCM_TUPLE(CSCDR2, kCLOCK_LcdifPreMux = CCM_TUPLE(CSCDR2_OFFSET,
CCM_CSCDR2_LCDIF_PRE_CLK_SEL_SHIFT, CCM_CSCDR2_LCDIF_PRE_CLK_SEL_SHIFT,
CCM_CSCDR2_LCDIF_PRE_CLK_SEL_MASK, CCM_CSCDR2_LCDIF_PRE_CLK_SEL_MASK,
CCM_NO_BUSY_WAIT), /*!< lcdif pre mux name */ CCM_NO_BUSY_WAIT), /*!< lcdif pre mux name */
kCLOCK_CsiMux = CCM_TUPLE( kCLOCK_CsiMux = CCM_TUPLE(
CSCDR3, CCM_CSCDR3_CSI_CLK_SEL_SHIFT, CCM_CSCDR3_CSI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< csi mux name */ CSCDR3_OFFSET, CCM_CSCDR3_CSI_CLK_SEL_SHIFT, CCM_CSCDR3_CSI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< csi mux name */
} clock_mux_t; } clock_mux_t;
/*! /*!
@ -682,104 +686,104 @@ typedef enum _clock_mux
typedef enum _clock_div typedef enum _clock_div
{ {
kCLOCK_ArmDiv = CCM_TUPLE( kCLOCK_ArmDiv = CCM_TUPLE(
CACRR, CCM_CACRR_ARM_PODF_SHIFT, CCM_CACRR_ARM_PODF_MASK, CCM_CDHIPR_ARM_PODF_BUSY_SHIFT), /*!< core div name */ CACRR_OFFSET, CCM_CACRR_ARM_PODF_SHIFT, CCM_CACRR_ARM_PODF_MASK, CCM_CDHIPR_ARM_PODF_BUSY_SHIFT), /*!< core div name */
kCLOCK_PeriphClk2Div = CCM_TUPLE(CBCDR, kCLOCK_PeriphClk2Div = CCM_TUPLE(CBCDR_OFFSET,
CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT, CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT,
CCM_CBCDR_PERIPH_CLK2_PODF_MASK, CCM_CBCDR_PERIPH_CLK2_PODF_MASK,
CCM_NO_BUSY_WAIT), /*!< periph clock2 div name */ CCM_NO_BUSY_WAIT), /*!< periph clock2 div name */
kCLOCK_SemcDiv = CCM_TUPLE(CBCDR, kCLOCK_SemcDiv = CCM_TUPLE(CBCDR_OFFSET,
CCM_CBCDR_SEMC_PODF_SHIFT, CCM_CBCDR_SEMC_PODF_SHIFT,
CCM_CBCDR_SEMC_PODF_MASK, CCM_CBCDR_SEMC_PODF_MASK,
CCM_CDHIPR_SEMC_PODF_BUSY_SHIFT), /*!< semc div name */ CCM_CDHIPR_SEMC_PODF_BUSY_SHIFT), /*!< semc div name */
kCLOCK_AhbDiv = CCM_TUPLE( kCLOCK_AhbDiv = CCM_TUPLE(
CBCDR, CCM_CBCDR_AHB_PODF_SHIFT, CCM_CBCDR_AHB_PODF_MASK, CCM_CDHIPR_AHB_PODF_BUSY_SHIFT), /*!< ahb div name */ CBCDR_OFFSET, CCM_CBCDR_AHB_PODF_SHIFT, CCM_CBCDR_AHB_PODF_MASK, CCM_CDHIPR_AHB_PODF_BUSY_SHIFT), /*!< ahb div name */
kCLOCK_IpgDiv = kCLOCK_IpgDiv =
CCM_TUPLE(CBCDR, CCM_CBCDR_IPG_PODF_SHIFT, CCM_CBCDR_IPG_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< ipg div name */ CCM_TUPLE(CBCDR_OFFSET, CCM_CBCDR_IPG_PODF_SHIFT, CCM_CBCDR_IPG_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< ipg div name */
kCLOCK_LpspiDiv = CCM_TUPLE( kCLOCK_LpspiDiv = CCM_TUPLE(
CBCMR, CCM_CBCMR_LPSPI_PODF_SHIFT, CCM_CBCMR_LPSPI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lpspi div name */ CBCMR_OFFSET, CCM_CBCMR_LPSPI_PODF_SHIFT, CCM_CBCMR_LPSPI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lpspi div name */
kCLOCK_LcdifDiv = CCM_TUPLE( kCLOCK_LcdifDiv = CCM_TUPLE(
CBCMR, CCM_CBCMR_LCDIF_PODF_SHIFT, CCM_CBCMR_LCDIF_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif div name */ CBCMR_OFFSET, CCM_CBCMR_LCDIF_PODF_SHIFT, CCM_CBCMR_LCDIF_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif div name */
kCLOCK_FlexspiDiv = CCM_TUPLE( kCLOCK_FlexspiDiv = CCM_TUPLE(
CSCMR1, CCM_CSCMR1_FLEXSPI_PODF_SHIFT, CCM_CSCMR1_FLEXSPI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< flexspi div name */ CSCMR1_OFFSET, CCM_CSCMR1_FLEXSPI_PODF_SHIFT, CCM_CSCMR1_FLEXSPI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< flexspi div name */
kCLOCK_PerclkDiv = CCM_TUPLE( kCLOCK_PerclkDiv = CCM_TUPLE(
CSCMR1, CCM_CSCMR1_PERCLK_PODF_SHIFT, CCM_CSCMR1_PERCLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< perclk div name */ CSCMR1_OFFSET, CCM_CSCMR1_PERCLK_PODF_SHIFT, CCM_CSCMR1_PERCLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< perclk div name */
kCLOCK_CanDiv = CCM_TUPLE( kCLOCK_CanDiv = CCM_TUPLE(
CSCMR2, CCM_CSCMR2_CAN_CLK_PODF_SHIFT, CCM_CSCMR2_CAN_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< can div name */ CSCMR2_OFFSET, CCM_CSCMR2_CAN_CLK_PODF_SHIFT, CCM_CSCMR2_CAN_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< can div name */
kCLOCK_TraceDiv = CCM_TUPLE( kCLOCK_TraceDiv = CCM_TUPLE(
CSCDR1, CCM_CSCDR1_TRACE_PODF_SHIFT, CCM_CSCDR1_TRACE_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< trace div name */ CSCDR1_OFFSET, CCM_CSCDR1_TRACE_PODF_SHIFT, CCM_CSCDR1_TRACE_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< trace div name */
kCLOCK_Usdhc2Div = CCM_TUPLE( kCLOCK_Usdhc2Div = CCM_TUPLE(
CSCDR1, CCM_CSCDR1_USDHC2_PODF_SHIFT, CCM_CSCDR1_USDHC2_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc2 div name */ CSCDR1_OFFSET, CCM_CSCDR1_USDHC2_PODF_SHIFT, CCM_CSCDR1_USDHC2_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc2 div name */
kCLOCK_Usdhc1Div = CCM_TUPLE( kCLOCK_Usdhc1Div = CCM_TUPLE(
CSCDR1, CCM_CSCDR1_USDHC1_PODF_SHIFT, CCM_CSCDR1_USDHC1_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc1 div name */ CSCDR1_OFFSET, CCM_CSCDR1_USDHC1_PODF_SHIFT, CCM_CSCDR1_USDHC1_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc1 div name */
kCLOCK_UartDiv = CCM_TUPLE( kCLOCK_UartDiv = CCM_TUPLE(
CSCDR1, CCM_CSCDR1_UART_CLK_PODF_SHIFT, CCM_CSCDR1_UART_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< uart div name */ CSCDR1_OFFSET, CCM_CSCDR1_UART_CLK_PODF_SHIFT, CCM_CSCDR1_UART_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< uart div name */
kCLOCK_Flexio2Div = CCM_TUPLE(CS1CDR, kCLOCK_Flexio2Div = CCM_TUPLE(CS1CDR_OFFSET,
CCM_CS1CDR_FLEXIO2_CLK_PODF_SHIFT, CCM_CS1CDR_FLEXIO2_CLK_PODF_SHIFT,
CCM_CS1CDR_FLEXIO2_CLK_PODF_MASK, CCM_CS1CDR_FLEXIO2_CLK_PODF_MASK,
CCM_NO_BUSY_WAIT), /*!< flexio2 pre div name */ CCM_NO_BUSY_WAIT), /*!< flexio2 pre div name */
kCLOCK_Sai3PreDiv = CCM_TUPLE(CS1CDR, kCLOCK_Sai3PreDiv = CCM_TUPLE(CS1CDR_OFFSET,
CCM_CS1CDR_SAI3_CLK_PRED_SHIFT, CCM_CS1CDR_SAI3_CLK_PRED_SHIFT,
CCM_CS1CDR_SAI3_CLK_PRED_MASK, CCM_CS1CDR_SAI3_CLK_PRED_MASK,
CCM_NO_BUSY_WAIT), /*!< sai3 pre div name */ CCM_NO_BUSY_WAIT), /*!< sai3 pre div name */
kCLOCK_Sai3Div = CCM_TUPLE( kCLOCK_Sai3Div = CCM_TUPLE(
CS1CDR, CCM_CS1CDR_SAI3_CLK_PODF_SHIFT, CCM_CS1CDR_SAI3_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 div name */ CS1CDR_OFFSET, CCM_CS1CDR_SAI3_CLK_PODF_SHIFT, CCM_CS1CDR_SAI3_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 div name */
kCLOCK_Flexio2PreDiv = CCM_TUPLE(CS1CDR, kCLOCK_Flexio2PreDiv = CCM_TUPLE(CS1CDR_OFFSET,
CCM_CS1CDR_FLEXIO2_CLK_PRED_SHIFT, CCM_CS1CDR_FLEXIO2_CLK_PRED_SHIFT,
CCM_CS1CDR_FLEXIO2_CLK_PRED_MASK, CCM_CS1CDR_FLEXIO2_CLK_PRED_MASK,
CCM_NO_BUSY_WAIT), /*!< sai3 pre div name */ CCM_NO_BUSY_WAIT), /*!< sai3 pre div name */
kCLOCK_Sai1PreDiv = CCM_TUPLE(CS1CDR, kCLOCK_Sai1PreDiv = CCM_TUPLE(CS1CDR_OFFSET,
CCM_CS1CDR_SAI1_CLK_PRED_SHIFT, CCM_CS1CDR_SAI1_CLK_PRED_SHIFT,
CCM_CS1CDR_SAI1_CLK_PRED_MASK, CCM_CS1CDR_SAI1_CLK_PRED_MASK,
CCM_NO_BUSY_WAIT), /*!< sai1 pre div name */ CCM_NO_BUSY_WAIT), /*!< sai1 pre div name */
kCLOCK_Sai1Div = CCM_TUPLE( kCLOCK_Sai1Div = CCM_TUPLE(
CS1CDR, CCM_CS1CDR_SAI1_CLK_PODF_SHIFT, CCM_CS1CDR_SAI1_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 div name */ CS1CDR_OFFSET, CCM_CS1CDR_SAI1_CLK_PODF_SHIFT, CCM_CS1CDR_SAI1_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 div name */
kCLOCK_Sai2PreDiv = CCM_TUPLE(CS2CDR, kCLOCK_Sai2PreDiv = CCM_TUPLE(CS2CDR_OFFSET,
CCM_CS2CDR_SAI2_CLK_PRED_SHIFT, CCM_CS2CDR_SAI2_CLK_PRED_SHIFT,
CCM_CS2CDR_SAI2_CLK_PRED_MASK, CCM_CS2CDR_SAI2_CLK_PRED_MASK,
CCM_NO_BUSY_WAIT), /*!< sai2 pre div name */ CCM_NO_BUSY_WAIT), /*!< sai2 pre div name */
kCLOCK_Sai2Div = CCM_TUPLE( kCLOCK_Sai2Div = CCM_TUPLE(
CS2CDR, CCM_CS2CDR_SAI2_CLK_PODF_SHIFT, CCM_CS2CDR_SAI2_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 div name */ CS2CDR_OFFSET, CCM_CS2CDR_SAI2_CLK_PODF_SHIFT, CCM_CS2CDR_SAI2_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 div name */
kCLOCK_Spdif0PreDiv = CCM_TUPLE(CDCDR, kCLOCK_Spdif0PreDiv = CCM_TUPLE(CDCDR_OFFSET,
CCM_CDCDR_SPDIF0_CLK_PRED_SHIFT, CCM_CDCDR_SPDIF0_CLK_PRED_SHIFT,
CCM_CDCDR_SPDIF0_CLK_PRED_MASK, CCM_CDCDR_SPDIF0_CLK_PRED_MASK,
CCM_NO_BUSY_WAIT), /*!< spdif pre div name */ CCM_NO_BUSY_WAIT), /*!< spdif pre div name */
kCLOCK_Spdif0Div = CCM_TUPLE(CDCDR, kCLOCK_Spdif0Div = CCM_TUPLE(CDCDR_OFFSET,
CCM_CDCDR_SPDIF0_CLK_PODF_SHIFT, CCM_CDCDR_SPDIF0_CLK_PODF_SHIFT,
CCM_CDCDR_SPDIF0_CLK_PODF_MASK, CCM_CDCDR_SPDIF0_CLK_PODF_MASK,
CCM_NO_BUSY_WAIT), /*!< spdif div name */ CCM_NO_BUSY_WAIT), /*!< spdif div name */
kCLOCK_Flexio1PreDiv = CCM_TUPLE(CDCDR, kCLOCK_Flexio1PreDiv = CCM_TUPLE(CDCDR_OFFSET,
CCM_CDCDR_FLEXIO1_CLK_PRED_SHIFT, CCM_CDCDR_FLEXIO1_CLK_PRED_SHIFT,
CCM_CDCDR_FLEXIO1_CLK_PRED_MASK, CCM_CDCDR_FLEXIO1_CLK_PRED_MASK,
CCM_NO_BUSY_WAIT), /*!< flexio1 pre div name */ CCM_NO_BUSY_WAIT), /*!< flexio1 pre div name */
kCLOCK_Flexio1Div = CCM_TUPLE(CDCDR, kCLOCK_Flexio1Div = CCM_TUPLE(CDCDR_OFFSET,
CCM_CDCDR_FLEXIO1_CLK_PODF_SHIFT, CCM_CDCDR_FLEXIO1_CLK_PODF_SHIFT,
CCM_CDCDR_FLEXIO1_CLK_PODF_MASK, CCM_CDCDR_FLEXIO1_CLK_PODF_MASK,
CCM_NO_BUSY_WAIT), /*!< flexio1 div name */ CCM_NO_BUSY_WAIT), /*!< flexio1 div name */
kCLOCK_Lpi2cDiv = CCM_TUPLE(CSCDR2, kCLOCK_Lpi2cDiv = CCM_TUPLE(CSCDR2_OFFSET,
CCM_CSCDR2_LPI2C_CLK_PODF_SHIFT, CCM_CSCDR2_LPI2C_CLK_PODF_SHIFT,
CCM_CSCDR2_LPI2C_CLK_PODF_MASK, CCM_CSCDR2_LPI2C_CLK_PODF_MASK,
CCM_NO_BUSY_WAIT), /*!< lpi2c div name */ CCM_NO_BUSY_WAIT), /*!< lpi2c div name */
kCLOCK_LcdifPreDiv = CCM_TUPLE( kCLOCK_LcdifPreDiv = CCM_TUPLE(
CSCDR2, CCM_CSCDR2_LCDIF_PRED_SHIFT, CCM_CSCDR2_LCDIF_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif pre div name */ CSCDR2_OFFSET, CCM_CSCDR2_LCDIF_PRED_SHIFT, CCM_CSCDR2_LCDIF_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif pre div name */
kCLOCK_CsiDiv = kCLOCK_CsiDiv =
CCM_TUPLE(CSCDR3, CCM_CSCDR3_CSI_PODF_SHIFT, CCM_CSCDR3_CSI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< csi div name */ CCM_TUPLE(CSCDR3_OFFSET, CCM_CSCDR3_CSI_PODF_SHIFT, CCM_CSCDR3_CSI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< csi div name */
} clock_div_t; } clock_div_t;
/*! @brief USB clock source definition. */ /*! @brief USB clock source definition. */
typedef enum _clock_usb_src typedef enum _clock_usb_src
{ {
kCLOCK_Usb480M = 0, /*!< Use 480M. */ kCLOCK_Usb480M = 0, /*!< Use 480M. */
kCLOCK_UsbSrcUnused = 0xFFFFFFFFU, /*!< Used when the function does not kCLOCK_UsbSrcUnused = (int)0xFFFFFFFFU, /*!< Used when the function does not
care the clock source. */ care the clock source. */
} clock_usb_src_t; } clock_usb_src_t;
@ -822,6 +826,9 @@ typedef struct _clock_sys_pll_config
uint32_t numerator; /*!< 30 bit numerator of fractional loop divider.*/ uint32_t numerator; /*!< 30 bit numerator of fractional loop divider.*/
uint32_t denominator; /*!< 30 bit denominator of fractional loop divider */ uint32_t denominator; /*!< 30 bit denominator of fractional loop divider */
uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */
uint16_t ss_stop; /*!< Stop value to get frequency change. */
uint8_t ss_enable; /*!< Enable spread spectrum modulation */
uint16_t ss_step; /*!< Step value to get frequency change step. */
} clock_sys_pll_config_t; } clock_sys_pll_config_t;
@ -864,17 +871,17 @@ typedef struct _clock_enet_pll_config
/*! @brief PLL name */ /*! @brief PLL name */
typedef enum _clock_pll typedef enum _clock_pll
{ {
kCLOCK_PllArm = CCM_ANALOG_TUPLE(PLL_ARM, CCM_ANALOG_PLL_ARM_ENABLE_SHIFT), /*!< PLL ARM */ kCLOCK_PllArm = CCM_ANALOG_TUPLE(PLL_ARM_OFFSET, CCM_ANALOG_PLL_ARM_ENABLE_SHIFT), /*!< PLL ARM */
kCLOCK_PllSys = CCM_ANALOG_TUPLE(PLL_SYS, CCM_ANALOG_PLL_SYS_ENABLE_SHIFT), /*!< PLL SYS */ kCLOCK_PllSys = CCM_ANALOG_TUPLE(PLL_SYS_OFFSET, CCM_ANALOG_PLL_SYS_ENABLE_SHIFT), /*!< PLL SYS */
kCLOCK_PllUsb1 = CCM_ANALOG_TUPLE(PLL_USB1, CCM_ANALOG_PLL_USB1_ENABLE_SHIFT), /*!< PLL USB1 */ kCLOCK_PllUsb1 = CCM_ANALOG_TUPLE(PLL_USB1_OFFSET, CCM_ANALOG_PLL_USB1_ENABLE_SHIFT), /*!< PLL USB1 */
kCLOCK_PllAudio = CCM_ANALOG_TUPLE(PLL_AUDIO, CCM_ANALOG_PLL_AUDIO_ENABLE_SHIFT), /*!< PLL Audio */ kCLOCK_PllAudio = CCM_ANALOG_TUPLE(PLL_AUDIO_OFFSET, CCM_ANALOG_PLL_AUDIO_ENABLE_SHIFT), /*!< PLL Audio */
kCLOCK_PllVideo = CCM_ANALOG_TUPLE(PLL_VIDEO, CCM_ANALOG_PLL_VIDEO_ENABLE_SHIFT), /*!< PLL Video */ kCLOCK_PllVideo = CCM_ANALOG_TUPLE(PLL_VIDEO_OFFSET, CCM_ANALOG_PLL_VIDEO_ENABLE_SHIFT), /*!< PLL Video */
kCLOCK_PllEnet = CCM_ANALOG_TUPLE(PLL_ENET, CCM_ANALOG_PLL_ENET_ENABLE_SHIFT), /*!< PLL Enet0 */ kCLOCK_PllEnet = CCM_ANALOG_TUPLE(PLL_ENET_OFFSET, CCM_ANALOG_PLL_ENET_ENABLE_SHIFT), /*!< PLL Enet0 */
kCLOCK_PllEnet25M = CCM_ANALOG_TUPLE(PLL_ENET, CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_SHIFT), /*!< PLL Enet1 */ kCLOCK_PllEnet25M = CCM_ANALOG_TUPLE(PLL_ENET_OFFSET, CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_SHIFT), /*!< PLL Enet1 */
kCLOCK_PllUsb2 = CCM_ANALOG_TUPLE(PLL_USB2, CCM_ANALOG_PLL_USB2_ENABLE_SHIFT), /*!< PLL USB2 */ kCLOCK_PllUsb2 = CCM_ANALOG_TUPLE(PLL_USB2_OFFSET, CCM_ANALOG_PLL_USB2_ENABLE_SHIFT), /*!< PLL USB2 */
} clock_pll_t; } clock_pll_t;
@ -1031,6 +1038,34 @@ static inline uint32_t CLOCK_GetOscFreq(void)
return (XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_OSC_SEL_MASK) ? 24000000UL : g_xtalFreq; return (XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_OSC_SEL_MASK) ? 24000000UL : g_xtalFreq;
} }
/*!
* @brief Gets the AHB clock frequency.
*
* @return The AHB clock frequency value in hertz.
*/
uint32_t CLOCK_GetAhbFreq(void);
/*!
* @brief Gets the SEMC clock frequency.
*
* @return The SEMC clock frequency value in hertz.
*/
uint32_t CLOCK_GetSemcFreq(void);
/*!
* @brief Gets the IPG clock frequency.
*
* @return The IPG clock frequency value in hertz.
*/
uint32_t CLOCK_GetIpgFreq(void);
/*!
* @brief Gets the PER clock frequency.
*
* @return The PER clock frequency value in hertz.
*/
uint32_t CLOCK_GetPerClkFreq(void);
/*! /*!
* @brief Gets the clock frequency for a specific clock name. * @brief Gets the clock frequency for a specific clock name.
* *
@ -1133,7 +1168,6 @@ void CLOCK_InitRcOsc24M(void);
void CLOCK_DeinitRcOsc24M(void); void CLOCK_DeinitRcOsc24M(void);
/* @} */ /* @} */
/*! @brief Enable USB HS clock. /*! @brief Enable USB HS clock.
* *
* This function only enables the access to USB HS prepheral, upper layer * This function only enables the access to USB HS prepheral, upper layer

View File

@ -443,6 +443,7 @@ static void ENET_SetHandler(ENET_Type *base,
handle->rxBuffSizeAlign[count] = buffCfg->rxBuffSizeAlign; handle->rxBuffSizeAlign[count] = buffCfg->rxBuffSizeAlign;
handle->txBdBase[count] = buffCfg->txBdStartAddrAlign; handle->txBdBase[count] = buffCfg->txBdStartAddrAlign;
handle->txBdCurrent[count] = buffCfg->txBdStartAddrAlign; handle->txBdCurrent[count] = buffCfg->txBdStartAddrAlign;
handle->txBdDirty[count] = buffCfg->txBdStartAddrAlign;
handle->txBuffSizeAlign[count] = buffCfg->txBuffSizeAlign; handle->txBuffSizeAlign[count] = buffCfg->txBuffSizeAlign;
buffCfg++; buffCfg++;
} }
@ -725,7 +726,7 @@ static void ENET_SetTxBufferDescriptors(enet_handle_t *handle, const enet_config
/* Check the input parameters. */ /* Check the input parameters. */
for (ringNum = 0; ringNum < config->ringNum; ringNum++) for (ringNum = 0; ringNum < config->ringNum; ringNum++)
{ {
if ((buffCfg->txBdStartAddrAlign > 0) && (buffCfg->txBufferAlign > 0)) if (buffCfg->txBdStartAddrAlign > 0)
{ {
volatile enet_tx_bd_struct_t *curBuffDescrip = buffCfg->txBdStartAddrAlign; volatile enet_tx_bd_struct_t *curBuffDescrip = buffCfg->txBdStartAddrAlign;
txBuffSizeAlign = buffCfg->txBuffSizeAlign; txBuffSizeAlign = buffCfg->txBuffSizeAlign;
@ -814,7 +815,7 @@ static void ENET_SetRxBufferDescriptors(enet_handle_t *handle, const enet_config
for (count = 0; count < buffCfg->rxBdNumber; count++) for (count = 0; count < buffCfg->rxBdNumber; count++)
{ {
/* Set data buffer and the length. */ /* Set data buffer and the length. */
curBuffDescrip->buffer = (uint8_t *)((uint32_t)&rxBuffer[count * rxBuffSizeAlign]); curBuffDescrip->buffer = (uint8_t *)(*((uint32_t *)(rxBuffer + count * 4)));
curBuffDescrip->length = 0; curBuffDescrip->length = 0;
/* Initializes the buffer descriptors with empty bit. */ /* Initializes the buffer descriptors with empty bit. */

View File

@ -648,6 +648,8 @@ struct _enet_handle
*txBdBase[FSL_FEATURE_ENET_QUEUE]; /*!< Transmit buffer descriptor base address pointer. */ *txBdBase[FSL_FEATURE_ENET_QUEUE]; /*!< Transmit buffer descriptor base address pointer. */
volatile enet_tx_bd_struct_t volatile enet_tx_bd_struct_t
*txBdCurrent[FSL_FEATURE_ENET_QUEUE]; /*!< The current available transmit buffer descriptor pointer. */ *txBdCurrent[FSL_FEATURE_ENET_QUEUE]; /*!< The current available transmit buffer descriptor pointer. */
volatile enet_tx_bd_struct_t
*txBdDirty[FSL_FEATURE_ENET_QUEUE]; /*!< The dirty transmit buffer descriptor needed to be updated from. */
uint32_t rxBuffSizeAlign[FSL_FEATURE_ENET_QUEUE]; /*!< Receive buffer size alignment. */ uint32_t rxBuffSizeAlign[FSL_FEATURE_ENET_QUEUE]; /*!< Receive buffer size alignment. */
uint32_t txBuffSizeAlign[FSL_FEATURE_ENET_QUEUE]; /*!< Transmit buffer size alignment. */ uint32_t txBuffSizeAlign[FSL_FEATURE_ENET_QUEUE]; /*!< Transmit buffer size alignment. */
uint8_t ringNum; /*!< Number of used rings. */ uint8_t ringNum; /*!< Number of used rings. */

View File

@ -1738,7 +1738,7 @@
"supported_form_factors": ["ARDUINO"], "supported_form_factors": ["ARDUINO"],
"core": "Cortex-M7FD", "core": "Cortex-M7FD",
"supported_toolchains": ["ARM", "GCC_ARM", "IAR"], "supported_toolchains": ["ARM", "GCC_ARM", "IAR"],
"extra_labels": ["NXP", "MCUXpresso_MCUS", "EVK", "MIMXRT1050", "IMX"], "extra_labels": ["NXP", "MCUXpresso_MCUS", "EVK", "MIMXRT1050", "IMX", "NXP_EMAC"],
"is_disk_virtual": true, "is_disk_virtual": true,
"macros": [ "macros": [
"CPU_MIMXRT1052DVL6B", "CPU_MIMXRT1052DVL6B",
@ -1746,7 +1746,9 @@
"XIP_BOOT_HEADER_ENABLE=1", "XIP_BOOT_HEADER_ENABLE=1",
"XIP_EXTERNAL_FLASH=1", "XIP_EXTERNAL_FLASH=1",
"XIP_BOOT_HEADER_DCD_ENABLE=1", "XIP_BOOT_HEADER_DCD_ENABLE=1",
"SKIP_SYSCLK_INIT" "SKIP_SYSCLK_INIT",
"FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE",
"SDRAM_IS_SHAREABLE"
], ],
"inherits": ["Target"], "inherits": ["Target"],
"detect_code": ["0227"], "detect_code": ["0227"],
@ -1756,6 +1758,7 @@
"USTICKER", "USTICKER",
"LPTICKER", "LPTICKER",
"ANALOGIN", "ANALOGIN",
"EMAC",
"I2C", "I2C",
"I2CSLAVE", "I2CSLAVE",
"ERROR_RED", "ERROR_RED",
@ -1770,7 +1773,11 @@
"STDIO_MESSAGES" "STDIO_MESSAGES"
], ],
"release_versions": ["2", "5"], "release_versions": ["2", "5"],
"device_name": "MIMXRT1052" "features": ["LWIP"],
"device_name": "MIMXRT1052",
"overrides": {
"network-default-interface-type": "ETHERNET"
}
}, },
"LPC54114": { "LPC54114": {
"supported_form_factors": ["ARDUINO"], "supported_form_factors": ["ARDUINO"],