mirror of https://github.com/milvus-io/milvus.git
177 lines
5.4 KiB
Go
177 lines
5.4 KiB
Go
/*
|
|
* # Licensed to the LF AI & Data foundation under one
|
|
* # or more contributor license agreements. See the NOTICE file
|
|
* # distributed with this work for additional information
|
|
* # regarding copyright ownership. The ASF licenses this file
|
|
* # to you under the Apache License, Version 2.0 (the
|
|
* # "License"); you may not use this file except in compliance
|
|
* # with the License. You may obtain a copy of the License at
|
|
* #
|
|
* # http://www.apache.org/licenses/LICENSE-2.0
|
|
* #
|
|
* # Unless required by applicable law or agreed to in writing, software
|
|
* # distributed under the License is distributed on an "AS IS" BASIS,
|
|
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* # See the License for the specific language governing permissions and
|
|
* # limitations under the License.
|
|
*/
|
|
|
|
package function
|
|
|
|
import (
|
|
"fmt"
|
|
"os"
|
|
"strings"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
|
|
"github.com/milvus-io/milvus/internal/util/function/models/openai"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
|
|
)
|
|
|
|
type OpenAIEmbeddingProvider struct {
|
|
fieldDim int64
|
|
|
|
client openai.OpenAIEmbeddingInterface
|
|
modelName string
|
|
embedDimParam int64
|
|
user string
|
|
|
|
maxBatch int
|
|
timeoutSec int64
|
|
}
|
|
|
|
func createOpenAIEmbeddingClient(apiKey string, url string) (*openai.OpenAIEmbeddingClient, error) {
|
|
if apiKey == "" {
|
|
apiKey = os.Getenv(openaiAKEnvStr)
|
|
}
|
|
if apiKey == "" {
|
|
return nil, fmt.Errorf("Missing credentials. Please pass `api_key`, or configure the %s environment variable in the Milvus service.", openaiAKEnvStr)
|
|
}
|
|
|
|
if url == "" {
|
|
url = "https://api.openai.com/v1/embeddings"
|
|
}
|
|
|
|
c := openai.NewOpenAIEmbeddingClient(apiKey, url)
|
|
return c, nil
|
|
}
|
|
|
|
func createAzureOpenAIEmbeddingClient(apiKey string, url string) (*openai.AzureOpenAIEmbeddingClient, error) {
|
|
if apiKey == "" {
|
|
apiKey = os.Getenv(azureOpenaiAKEnvStr)
|
|
}
|
|
if apiKey == "" {
|
|
return nil, fmt.Errorf("Missing credentials. Please pass `api_key`, or configure the %s environment variable in the Milvus service", azureOpenaiAKEnvStr)
|
|
}
|
|
|
|
if url == "" {
|
|
if resourceName := os.Getenv(azureOpenaiResourceName); resourceName != "" {
|
|
url = fmt.Sprintf("https://%s.openai.azure.com", resourceName)
|
|
}
|
|
}
|
|
if url == "" {
|
|
return nil, fmt.Errorf("Must configure the %s environment variable in the Milvus service", azureOpenaiResourceName)
|
|
}
|
|
c := openai.NewAzureOpenAIEmbeddingClient(apiKey, url)
|
|
return c, nil
|
|
}
|
|
|
|
func newOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, isAzure bool) (*OpenAIEmbeddingProvider, error) {
|
|
fieldDim, err := typeutil.GetDim(fieldSchema)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var apiKey, url, modelName, user string
|
|
var dim int64
|
|
|
|
for _, param := range functionSchema.Params {
|
|
switch strings.ToLower(param.Key) {
|
|
case modelNameParamKey:
|
|
modelName = param.Value
|
|
case dimParamKey:
|
|
dim, err = parseAndCheckFieldDim(param.Value, fieldDim, fieldSchema.Name)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
case userParamKey:
|
|
user = param.Value
|
|
case apiKeyParamKey:
|
|
apiKey = param.Value
|
|
case embeddingURLParamKey:
|
|
url = param.Value
|
|
default:
|
|
}
|
|
}
|
|
|
|
var c openai.OpenAIEmbeddingInterface
|
|
if !isAzure {
|
|
if modelName != TextEmbeddingAda002 && modelName != TextEmbedding3Small && modelName != TextEmbedding3Large {
|
|
return nil, fmt.Errorf("Unsupported model: %s, only support [%s, %s, %s]",
|
|
modelName, TextEmbeddingAda002, TextEmbedding3Small, TextEmbedding3Large)
|
|
}
|
|
|
|
c, err = createOpenAIEmbeddingClient(apiKey, url)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
c, err = createAzureOpenAIEmbeddingClient(apiKey, url)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
provider := OpenAIEmbeddingProvider{
|
|
client: c,
|
|
fieldDim: fieldDim,
|
|
modelName: modelName,
|
|
user: user,
|
|
embedDimParam: dim,
|
|
maxBatch: 128,
|
|
timeoutSec: 30,
|
|
}
|
|
return &provider, nil
|
|
}
|
|
|
|
func NewOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema) (*OpenAIEmbeddingProvider, error) {
|
|
return newOpenAIEmbeddingProvider(fieldSchema, functionSchema, false)
|
|
}
|
|
|
|
func NewAzureOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema) (*OpenAIEmbeddingProvider, error) {
|
|
return newOpenAIEmbeddingProvider(fieldSchema, functionSchema, true)
|
|
}
|
|
|
|
func (provider *OpenAIEmbeddingProvider) MaxBatch() int {
|
|
return 5 * provider.maxBatch
|
|
}
|
|
|
|
func (provider *OpenAIEmbeddingProvider) FieldDim() int64 {
|
|
return provider.fieldDim
|
|
}
|
|
|
|
func (provider *OpenAIEmbeddingProvider) CallEmbedding(texts []string, _ TextEmbeddingMode) ([][]float32, error) {
|
|
numRows := len(texts)
|
|
data := make([][]float32, 0, numRows)
|
|
for i := 0; i < numRows; i += provider.maxBatch {
|
|
end := i + provider.maxBatch
|
|
if end > numRows {
|
|
end = numRows
|
|
}
|
|
resp, err := provider.client.Embedding(provider.modelName, texts[i:end], int(provider.embedDimParam), provider.user, provider.timeoutSec)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if end-i != len(resp.Data) {
|
|
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Data))
|
|
}
|
|
for _, item := range resp.Data {
|
|
if len(item.Embedding) != int(provider.fieldDim) {
|
|
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
|
|
provider.fieldDim, len(item.Embedding))
|
|
}
|
|
data = append(data, item.Embedding)
|
|
}
|
|
}
|
|
return data, nil
|
|
}
|