milvus/internal/util/function/openai_embedding_provider.go

177 lines
5.4 KiB
Go

/*
* # Licensed to the LF AI & Data foundation under one
* # or more contributor license agreements. See the NOTICE file
* # distributed with this work for additional information
* # regarding copyright ownership. The ASF licenses this file
* # to you under the Apache License, Version 2.0 (the
* # "License"); you may not use this file except in compliance
* # with the License. You may obtain a copy of the License at
* #
* # http://www.apache.org/licenses/LICENSE-2.0
* #
* # Unless required by applicable law or agreed to in writing, software
* # distributed under the License is distributed on an "AS IS" BASIS,
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* # See the License for the specific language governing permissions and
* # limitations under the License.
*/
package function
import (
"fmt"
"os"
"strings"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/util/function/models/openai"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
type OpenAIEmbeddingProvider struct {
fieldDim int64
client openai.OpenAIEmbeddingInterface
modelName string
embedDimParam int64
user string
maxBatch int
timeoutSec int64
}
func createOpenAIEmbeddingClient(apiKey string, url string) (*openai.OpenAIEmbeddingClient, error) {
if apiKey == "" {
apiKey = os.Getenv(openaiAKEnvStr)
}
if apiKey == "" {
return nil, fmt.Errorf("Missing credentials. Please pass `api_key`, or configure the %s environment variable in the Milvus service.", openaiAKEnvStr)
}
if url == "" {
url = "https://api.openai.com/v1/embeddings"
}
c := openai.NewOpenAIEmbeddingClient(apiKey, url)
return c, nil
}
func createAzureOpenAIEmbeddingClient(apiKey string, url string) (*openai.AzureOpenAIEmbeddingClient, error) {
if apiKey == "" {
apiKey = os.Getenv(azureOpenaiAKEnvStr)
}
if apiKey == "" {
return nil, fmt.Errorf("Missing credentials. Please pass `api_key`, or configure the %s environment variable in the Milvus service", azureOpenaiAKEnvStr)
}
if url == "" {
if resourceName := os.Getenv(azureOpenaiResourceName); resourceName != "" {
url = fmt.Sprintf("https://%s.openai.azure.com", resourceName)
}
}
if url == "" {
return nil, fmt.Errorf("Must configure the %s environment variable in the Milvus service", azureOpenaiResourceName)
}
c := openai.NewAzureOpenAIEmbeddingClient(apiKey, url)
return c, nil
}
func newOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, isAzure bool) (*OpenAIEmbeddingProvider, error) {
fieldDim, err := typeutil.GetDim(fieldSchema)
if err != nil {
return nil, err
}
var apiKey, url, modelName, user string
var dim int64
for _, param := range functionSchema.Params {
switch strings.ToLower(param.Key) {
case modelNameParamKey:
modelName = param.Value
case dimParamKey:
dim, err = parseAndCheckFieldDim(param.Value, fieldDim, fieldSchema.Name)
if err != nil {
return nil, err
}
case userParamKey:
user = param.Value
case apiKeyParamKey:
apiKey = param.Value
case embeddingURLParamKey:
url = param.Value
default:
}
}
var c openai.OpenAIEmbeddingInterface
if !isAzure {
if modelName != TextEmbeddingAda002 && modelName != TextEmbedding3Small && modelName != TextEmbedding3Large {
return nil, fmt.Errorf("Unsupported model: %s, only support [%s, %s, %s]",
modelName, TextEmbeddingAda002, TextEmbedding3Small, TextEmbedding3Large)
}
c, err = createOpenAIEmbeddingClient(apiKey, url)
if err != nil {
return nil, err
}
} else {
c, err = createAzureOpenAIEmbeddingClient(apiKey, url)
if err != nil {
return nil, err
}
}
provider := OpenAIEmbeddingProvider{
client: c,
fieldDim: fieldDim,
modelName: modelName,
user: user,
embedDimParam: dim,
maxBatch: 128,
timeoutSec: 30,
}
return &provider, nil
}
func NewOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema) (*OpenAIEmbeddingProvider, error) {
return newOpenAIEmbeddingProvider(fieldSchema, functionSchema, false)
}
func NewAzureOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema) (*OpenAIEmbeddingProvider, error) {
return newOpenAIEmbeddingProvider(fieldSchema, functionSchema, true)
}
func (provider *OpenAIEmbeddingProvider) MaxBatch() int {
return 5 * provider.maxBatch
}
func (provider *OpenAIEmbeddingProvider) FieldDim() int64 {
return provider.fieldDim
}
func (provider *OpenAIEmbeddingProvider) CallEmbedding(texts []string, _ TextEmbeddingMode) ([][]float32, error) {
numRows := len(texts)
data := make([][]float32, 0, numRows)
for i := 0; i < numRows; i += provider.maxBatch {
end := i + provider.maxBatch
if end > numRows {
end = numRows
}
resp, err := provider.client.Embedding(provider.modelName, texts[i:end], int(provider.embedDimParam), provider.user, provider.timeoutSec)
if err != nil {
return nil, err
}
if end-i != len(resp.Data) {
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Data))
}
for _, item := range resp.Data {
if len(item.Embedding) != int(provider.fieldDim) {
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
provider.fieldDim, len(item.Embedding))
}
data = append(data, item.Embedding)
}
}
return data, nil
}