/* * # Licensed to the LF AI & Data foundation under one * # or more contributor license agreements. See the NOTICE file * # distributed with this work for additional information * # regarding copyright ownership. The ASF licenses this file * # to you under the Apache License, Version 2.0 (the * # "License"); you may not use this file except in compliance * # with the License. You may obtain a copy of the License at * # * # http://www.apache.org/licenses/LICENSE-2.0 * # * # Unless required by applicable law or agreed to in writing, software * # distributed under the License is distributed on an "AS IS" BASIS, * # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * # See the License for the specific language governing permissions and * # limitations under the License. */ package function import ( "fmt" "os" "strings" "github.com/milvus-io/milvus-proto/go-api/v2/schemapb" "github.com/milvus-io/milvus/internal/util/function/models/openai" "github.com/milvus-io/milvus/pkg/v2/util/typeutil" ) type OpenAIEmbeddingProvider struct { fieldDim int64 client openai.OpenAIEmbeddingInterface modelName string embedDimParam int64 user string maxBatch int timeoutSec int64 } func createOpenAIEmbeddingClient(apiKey string, url string) (*openai.OpenAIEmbeddingClient, error) { if apiKey == "" { apiKey = os.Getenv(openaiAKEnvStr) } if apiKey == "" { return nil, fmt.Errorf("Missing credentials. Please pass `api_key`, or configure the %s environment variable in the Milvus service.", openaiAKEnvStr) } if url == "" { url = "https://api.openai.com/v1/embeddings" } c := openai.NewOpenAIEmbeddingClient(apiKey, url) return c, nil } func createAzureOpenAIEmbeddingClient(apiKey string, url string) (*openai.AzureOpenAIEmbeddingClient, error) { if apiKey == "" { apiKey = os.Getenv(azureOpenaiAKEnvStr) } if apiKey == "" { return nil, fmt.Errorf("Missing credentials. Please pass `api_key`, or configure the %s environment variable in the Milvus service", azureOpenaiAKEnvStr) } if url == "" { if resourceName := os.Getenv(azureOpenaiResourceName); resourceName != "" { url = fmt.Sprintf("https://%s.openai.azure.com", resourceName) } } if url == "" { return nil, fmt.Errorf("Must configure the %s environment variable in the Milvus service", azureOpenaiResourceName) } c := openai.NewAzureOpenAIEmbeddingClient(apiKey, url) return c, nil } func newOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, isAzure bool) (*OpenAIEmbeddingProvider, error) { fieldDim, err := typeutil.GetDim(fieldSchema) if err != nil { return nil, err } var apiKey, url, modelName, user string var dim int64 for _, param := range functionSchema.Params { switch strings.ToLower(param.Key) { case modelNameParamKey: modelName = param.Value case dimParamKey: dim, err = parseAndCheckFieldDim(param.Value, fieldDim, fieldSchema.Name) if err != nil { return nil, err } case userParamKey: user = param.Value case apiKeyParamKey: apiKey = param.Value case embeddingURLParamKey: url = param.Value default: } } var c openai.OpenAIEmbeddingInterface if !isAzure { if modelName != TextEmbeddingAda002 && modelName != TextEmbedding3Small && modelName != TextEmbedding3Large { return nil, fmt.Errorf("Unsupported model: %s, only support [%s, %s, %s]", modelName, TextEmbeddingAda002, TextEmbedding3Small, TextEmbedding3Large) } c, err = createOpenAIEmbeddingClient(apiKey, url) if err != nil { return nil, err } } else { c, err = createAzureOpenAIEmbeddingClient(apiKey, url) if err != nil { return nil, err } } provider := OpenAIEmbeddingProvider{ client: c, fieldDim: fieldDim, modelName: modelName, user: user, embedDimParam: dim, maxBatch: 128, timeoutSec: 30, } return &provider, nil } func NewOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema) (*OpenAIEmbeddingProvider, error) { return newOpenAIEmbeddingProvider(fieldSchema, functionSchema, false) } func NewAzureOpenAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema) (*OpenAIEmbeddingProvider, error) { return newOpenAIEmbeddingProvider(fieldSchema, functionSchema, true) } func (provider *OpenAIEmbeddingProvider) MaxBatch() int { return 5 * provider.maxBatch } func (provider *OpenAIEmbeddingProvider) FieldDim() int64 { return provider.fieldDim } func (provider *OpenAIEmbeddingProvider) CallEmbedding(texts []string, _ TextEmbeddingMode) ([][]float32, error) { numRows := len(texts) data := make([][]float32, 0, numRows) for i := 0; i < numRows; i += provider.maxBatch { end := i + provider.maxBatch if end > numRows { end = numRows } resp, err := provider.client.Embedding(provider.modelName, texts[i:end], int(provider.embedDimParam), provider.user, provider.timeoutSec) if err != nil { return nil, err } if end-i != len(resp.Data) { return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Data)) } for _, item := range resp.Data { if len(item.Embedding) != int(provider.fieldDim) { return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]", provider.fieldDim, len(item.Embedding)) } data = append(data, item.Embedding) } } return data, nil }