milvus/tests/milvus_benchmark/docker_runner.py

262 lines
14 KiB
Python

import os
import logging
import pdb
import time
import random
from multiprocessing import Process
import numpy as np
from client import MilvusClient
import utils
import parser
from runner import Runner
logger = logging.getLogger("milvus_benchmark.docker")
class DockerRunner(Runner):
"""run docker mode"""
def __init__(self, image):
super(DockerRunner, self).__init__()
self.image = image
def run(self, definition, run_type=None):
if run_type == "performance":
for op_type, op_value in definition.items():
# run docker mode
run_count = op_value["run_count"]
run_params = op_value["params"]
container = None
if op_type == "insert":
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["table_name"]
volume_name = param["db_path_prefix"]
print(table_name)
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
for k, v in param.items():
if k.startswith("server."):
# Update server config
utils.modify_config(k, v, type="server", db_slave=None)
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
# Check has table or not
if milvus.exists_table():
milvus.delete()
time.sleep(10)
milvus.create_table(table_name, dimension, index_file_size, metric_type)
res = self.do_insert(milvus, table_name, data_type, dimension, table_size, param["ni_per"])
logger.info(res)
# wait for file merge
time.sleep(6 * (table_size / 500000))
# Clear up
utils.remove_container(container)
elif op_type == "query":
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
volume_name = param["db_path_prefix"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
for k, v in param.items():
if k.startswith("server."):
utils.modify_config(k, v, type="server")
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
logger.debug(milvus._milvus.show_tables())
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
# parse index info
index_types = param["index.index_types"]
nlists = param["index.nlists"]
# parse top-k, nq, nprobe
top_ks, nqs, nprobes = parser.search_params_parser(param)
for index_type in index_types:
for nlist in nlists:
result = milvus.describe_index()
logger.info(result)
milvus.create_index(index_type, nlist)
result = milvus.describe_index()
logger.info(result)
# preload index
milvus.preload_table()
logger.info("Start warm up query")
res = self.do_query(milvus, table_name, [1], [1], 1, 1)
logger.info("End warm up query")
# Run query test
for nprobe in nprobes:
logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count)
headers = ["Nprobe/Top-k"]
headers.extend([str(top_k) for top_k in top_ks])
utils.print_table(headers, nqs, res)
utils.remove_container(container)
elif run_type == "accuracy":
"""
{
"dataset": "random_50m_1024_512",
"index.index_types": ["flat", ivf_flat", "ivf_sq8"],
"index.nlists": [16384],
"nprobes": [1, 32, 128],
"nqs": [100],
"top_ks": [1, 64],
"server.use_blas_threshold": 1100,
"server.cpu_cache_capacity": 256
}
"""
for op_type, op_value in definition.items():
if op_type != "query":
logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type)
break
run_count = op_value["run_count"]
run_params = op_value["params"]
container = None
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
sift_acc = False
if "sift_acc" in param:
sift_acc = param["sift_acc"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
for k, v in param.items():
if k.startswith("server."):
utils.modify_config(k, v, type="server")
volume_name = param["db_path_prefix"]
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
# parse index info
index_types = param["index.index_types"]
nlists = param["index.nlists"]
# parse top-k, nq, nprobe
top_ks, nqs, nprobes = parser.search_params_parser(param)
if sift_acc is True:
# preload groundtruth data
true_ids_all = self.get_groundtruth_ids(table_size)
acc_dict = {}
for index_type in index_types:
for nlist in nlists:
result = milvus.describe_index()
logger.info(result)
milvus.create_index(index_type, nlist)
# preload index
milvus.preload_table()
# Run query test
for nprobe in nprobes:
logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
for top_k in top_ks:
for nq in nqs:
result_ids = []
id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
(table_name, index_type, nlist, metric_type, nprobe, top_k, nq)
if sift_acc is False:
self.do_query_acc(milvus, table_name, top_k, nq, nprobe, id_prefix)
if index_type != "flat":
# Compute accuracy
base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
(table_name, nlist, metric_type, nprobe, top_k, nq)
avg_acc = self.compute_accuracy(base_name, id_prefix)
logger.info("Query: <%s> accuracy: %s" % (id_prefix, avg_acc))
else:
result_ids = self.do_query_ids(milvus, table_name, top_k, nq, nprobe)
acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
logger.info("Query: <%s> accuracy: %s" % (id_prefix, acc_value))
# # print accuracy table
# headers = [table_name]
# headers.extend([str(top_k) for top_k in top_ks])
# utils.print_table(headers, nqs, res)
# remove container, and run next definition
logger.info("remove container, and run next definition")
utils.remove_container(container)
elif run_type == "stability":
for op_type, op_value in definition.items():
if op_type != "query":
logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type)
break
run_count = op_value["run_count"]
run_params = op_value["params"]
container = None
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
volume_name = param["db_path_prefix"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
# set default test time
if "during_time" not in param:
during_time = 100 # seconds
else:
during_time = int(param["during_time"]) * 60
# set default query process num
if "query_process_num" not in param:
query_process_num = 10
else:
query_process_num = int(param["query_process_num"])
for k, v in param.items():
if k.startswith("server."):
utils.modify_config(k, v, type="server")
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
start_time = time.time()
insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
while time.time() < start_time + during_time:
processes = []
# do query
# for i in range(query_process_num):
# milvus_instance = MilvusClient(table_name)
# top_k = random.choice([x for x in range(1, 100)])
# nq = random.choice([x for x in range(1, 100)])
# nprobe = random.choice([x for x in range(1, 1000)])
# # logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
# p = Process(target=self.do_query, args=(milvus_instance, table_name, [top_k], [nq], [nprobe], run_count, ))
# processes.append(p)
# p.start()
# time.sleep(0.1)
# for p in processes:
# p.join()
milvus_instance = MilvusClient(table_name)
top_ks = random.sample([x for x in range(1, 100)], 3)
nqs = random.sample([x for x in range(1, 1000)], 3)
nprobe = random.choice([x for x in range(1, 500)])
res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count)
if int(time.time() - start_time) % 120 == 0:
status, res = milvus_instance.insert(insert_vectors, ids=[x for x in range(len(insert_vectors))])
if not status.OK():
logger.error(status)
# status = milvus_instance.drop_index()
# if not status.OK():
# logger.error(status)
# index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"])
result = milvus.describe_index()
logger.info(result)
milvus_instance.create_index("ivf_sq8", 16384)
utils.remove_container(container)
else:
logger.warning("Run type: %s not supported" % run_type)