import os import logging import pdb import time import random from multiprocessing import Process import numpy as np from client import MilvusClient import utils import parser from runner import Runner logger = logging.getLogger("milvus_benchmark.docker") class DockerRunner(Runner): """run docker mode""" def __init__(self, image): super(DockerRunner, self).__init__() self.image = image def run(self, definition, run_type=None): if run_type == "performance": for op_type, op_value in definition.items(): # run docker mode run_count = op_value["run_count"] run_params = op_value["params"] container = None if op_type == "insert": for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) table_name = param["table_name"] volume_name = param["db_path_prefix"] print(table_name) (data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name) for k, v in param.items(): if k.startswith("server."): # Update server config utils.modify_config(k, v, type="server", db_slave=None) container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(table_name) # Check has table or not if milvus.exists_table(): milvus.delete() time.sleep(10) milvus.create_table(table_name, dimension, index_file_size, metric_type) res = self.do_insert(milvus, table_name, data_type, dimension, table_size, param["ni_per"]) logger.info(res) # wait for file merge time.sleep(6 * (table_size / 500000)) # Clear up utils.remove_container(container) elif op_type == "query": for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) table_name = param["dataset"] volume_name = param["db_path_prefix"] (data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(table_name) logger.debug(milvus._milvus.show_tables()) # Check has table or not if not milvus.exists_table(): logger.warning("Table %s not existed, continue exec next params ..." % table_name) continue # parse index info index_types = param["index.index_types"] nlists = param["index.nlists"] # parse top-k, nq, nprobe top_ks, nqs, nprobes = parser.search_params_parser(param) for index_type in index_types: for nlist in nlists: result = milvus.describe_index() logger.info(result) milvus.create_index(index_type, nlist) result = milvus.describe_index() logger.info(result) # preload index milvus.preload_table() logger.info("Start warm up query") res = self.do_query(milvus, table_name, [1], [1], 1, 1) logger.info("End warm up query") # Run query test for nprobe in nprobes: logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count) headers = ["Nprobe/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) utils.print_table(headers, nqs, res) utils.remove_container(container) elif run_type == "accuracy": """ { "dataset": "random_50m_1024_512", "index.index_types": ["flat", ivf_flat", "ivf_sq8"], "index.nlists": [16384], "nprobes": [1, 32, 128], "nqs": [100], "top_ks": [1, 64], "server.use_blas_threshold": 1100, "server.cpu_cache_capacity": 256 } """ for op_type, op_value in definition.items(): if op_type != "query": logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type) break run_count = op_value["run_count"] run_params = op_value["params"] container = None for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) table_name = param["dataset"] sift_acc = False if "sift_acc" in param: sift_acc = param["sift_acc"] (data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") volume_name = param["db_path_prefix"] container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(table_name) # Check has table or not if not milvus.exists_table(): logger.warning("Table %s not existed, continue exec next params ..." % table_name) continue # parse index info index_types = param["index.index_types"] nlists = param["index.nlists"] # parse top-k, nq, nprobe top_ks, nqs, nprobes = parser.search_params_parser(param) if sift_acc is True: # preload groundtruth data true_ids_all = self.get_groundtruth_ids(table_size) acc_dict = {} for index_type in index_types: for nlist in nlists: result = milvus.describe_index() logger.info(result) milvus.create_index(index_type, nlist) # preload index milvus.preload_table() # Run query test for nprobe in nprobes: logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) for top_k in top_ks: for nq in nqs: result_ids = [] id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \ (table_name, index_type, nlist, metric_type, nprobe, top_k, nq) if sift_acc is False: self.do_query_acc(milvus, table_name, top_k, nq, nprobe, id_prefix) if index_type != "flat": # Compute accuracy base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \ (table_name, nlist, metric_type, nprobe, top_k, nq) avg_acc = self.compute_accuracy(base_name, id_prefix) logger.info("Query: <%s> accuracy: %s" % (id_prefix, avg_acc)) else: result_ids = self.do_query_ids(milvus, table_name, top_k, nq, nprobe) acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query: <%s> accuracy: %s" % (id_prefix, acc_value)) # # print accuracy table # headers = [table_name] # headers.extend([str(top_k) for top_k in top_ks]) # utils.print_table(headers, nqs, res) # remove container, and run next definition logger.info("remove container, and run next definition") utils.remove_container(container) elif run_type == "stability": for op_type, op_value in definition.items(): if op_type != "query": logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type) break run_count = op_value["run_count"] run_params = op_value["params"] container = None for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) table_name = param["dataset"] volume_name = param["db_path_prefix"] (data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name) # set default test time if "during_time" not in param: during_time = 100 # seconds else: during_time = int(param["during_time"]) * 60 # set default query process num if "query_process_num" not in param: query_process_num = 10 else: query_process_num = int(param["query_process_num"]) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(table_name) # Check has table or not if not milvus.exists_table(): logger.warning("Table %s not existed, continue exec next params ..." % table_name) continue start_time = time.time() insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] while time.time() < start_time + during_time: processes = [] # do query # for i in range(query_process_num): # milvus_instance = MilvusClient(table_name) # top_k = random.choice([x for x in range(1, 100)]) # nq = random.choice([x for x in range(1, 100)]) # nprobe = random.choice([x for x in range(1, 1000)]) # # logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) # p = Process(target=self.do_query, args=(milvus_instance, table_name, [top_k], [nq], [nprobe], run_count, )) # processes.append(p) # p.start() # time.sleep(0.1) # for p in processes: # p.join() milvus_instance = MilvusClient(table_name) top_ks = random.sample([x for x in range(1, 100)], 3) nqs = random.sample([x for x in range(1, 1000)], 3) nprobe = random.choice([x for x in range(1, 500)]) res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count) if int(time.time() - start_time) % 120 == 0: status, res = milvus_instance.insert(insert_vectors, ids=[x for x in range(len(insert_vectors))]) if not status.OK(): logger.error(status) # status = milvus_instance.drop_index() # if not status.OK(): # logger.error(status) # index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"]) result = milvus.describe_index() logger.info(result) milvus_instance.create_index("ivf_sq8", 16384) utils.remove_container(container) else: logger.warning("Run type: %s not supported" % run_type)