mirror of https://github.com/milvus-io/milvus.git
247 lines
6.7 KiB
Go
247 lines
6.7 KiB
Go
/*
|
|
* # Licensed to the LF AI & Data foundation under one
|
|
* # or more contributor license agreements. See the NOTICE file
|
|
* # distributed with this work for additional information
|
|
* # regarding copyright ownership. The ASF licenses this file
|
|
* # to you under the Apache License, Version 2.0 (the
|
|
* # "License"); you may not use this file except in compliance
|
|
* # with the License. You may obtain a copy of the License at
|
|
* #
|
|
* # http://www.apache.org/licenses/LICENSE-2.0
|
|
* #
|
|
* # Unless required by applicable law or agreed to in writing, software
|
|
* # distributed under the License is distributed on an "AS IS" BASIS,
|
|
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* # See the License for the specific language governing permissions and
|
|
* # limitations under the License.
|
|
*/
|
|
|
|
package function
|
|
|
|
import (
|
|
"fmt"
|
|
"os"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/cockroachdb/errors"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/commonpb"
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
|
|
"github.com/milvus-io/milvus/internal/util/credentials"
|
|
"github.com/milvus-io/milvus/internal/util/function/models/vertexai"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
|
|
)
|
|
|
|
type vertexAIJsonKey struct {
|
|
mu sync.Mutex
|
|
filePath string
|
|
jsonKey []byte
|
|
}
|
|
|
|
var vtxKey vertexAIJsonKey
|
|
|
|
func getVertexAIJsonKey() ([]byte, error) {
|
|
vtxKey.mu.Lock()
|
|
defer vtxKey.mu.Unlock()
|
|
|
|
jsonKeyPath := os.Getenv(vertexServiceAccountJSONEnv)
|
|
if jsonKeyPath == "" {
|
|
return nil, errors.New("VetexAI credentials file path is empty")
|
|
}
|
|
if vtxKey.filePath == jsonKeyPath {
|
|
return vtxKey.jsonKey, nil
|
|
}
|
|
|
|
jsonKey, err := os.ReadFile(jsonKeyPath)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Vertexai: read credentials file failed, %v", err)
|
|
}
|
|
|
|
vtxKey.jsonKey = jsonKey
|
|
vtxKey.filePath = jsonKeyPath
|
|
|
|
return vtxKey.jsonKey, nil
|
|
}
|
|
|
|
const (
|
|
vertexAIDocRetrival string = "DOC_RETRIEVAL"
|
|
vertexAICodeRetrival string = "CODE_RETRIEVAL"
|
|
vertexAISTS string = "STS"
|
|
)
|
|
|
|
type VertexAIEmbeddingProvider struct {
|
|
fieldDim int64
|
|
|
|
client *vertexai.VertexAIEmbedding
|
|
modelName string
|
|
embedDimParam int64
|
|
task string
|
|
|
|
maxBatch int
|
|
timeoutSec int64
|
|
}
|
|
|
|
func createVertexAIEmbeddingClient(url string, credentialsJSON []byte) (*vertexai.VertexAIEmbedding, error) {
|
|
c := vertexai.NewVertexAIEmbedding(url, credentialsJSON, "https://www.googleapis.com/auth/cloud-platform", "")
|
|
return c, nil
|
|
}
|
|
|
|
func parseGcpCredentialInfo(credentials *credentials.Credentials, params []*commonpb.KeyValuePair, confParams map[string]string) ([]byte, error) {
|
|
// function param > yaml > env
|
|
var credentialsJSON []byte
|
|
var err error
|
|
|
|
for _, param := range params {
|
|
switch strings.ToLower(param.Key) {
|
|
case credentialParamKey:
|
|
credentialName := param.Value
|
|
if credentialsJSON, err = credentials.GetGcpCredential(credentialName); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
// from milvus.yaml
|
|
if credentialsJSON == nil {
|
|
credentialName := confParams[credentialParamKey]
|
|
if credentialName != "" {
|
|
if credentialsJSON, err = credentials.GetGcpCredential(credentialName); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
// from env
|
|
if credentialsJSON == nil {
|
|
credentialsJSON, err = getVertexAIJsonKey()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return credentialsJSON, nil
|
|
}
|
|
|
|
func NewVertexAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, c *vertexai.VertexAIEmbedding, params map[string]string, credentials *credentials.Credentials) (*VertexAIEmbeddingProvider, error) {
|
|
fieldDim, err := typeutil.GetDim(fieldSchema)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var location, projectID, task, modelName string
|
|
var dim int64
|
|
|
|
for _, param := range functionSchema.Params {
|
|
switch strings.ToLower(param.Key) {
|
|
case modelNameParamKey:
|
|
modelName = param.Value
|
|
case dimParamKey:
|
|
dim, err = parseAndCheckFieldDim(param.Value, fieldDim, fieldSchema.Name)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
case locationParamKey:
|
|
location = param.Value
|
|
case projectIDParamKey:
|
|
projectID = param.Value
|
|
case taskTypeParamKey:
|
|
task = param.Value
|
|
default:
|
|
}
|
|
}
|
|
|
|
if task == "" {
|
|
task = vertexAIDocRetrival
|
|
}
|
|
|
|
if location == "" {
|
|
location = "us-central1"
|
|
}
|
|
|
|
url := params["url"]
|
|
if url == "" {
|
|
url = fmt.Sprintf("https://%s-aiplatform.googleapis.com/v1/projects/%s/locations/%s/publishers/google/models/%s:predict", location, projectID, location, modelName)
|
|
}
|
|
var client *vertexai.VertexAIEmbedding
|
|
if c == nil {
|
|
jsonKey, err := parseGcpCredentialInfo(credentials, functionSchema.Params, params)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
client, err = createVertexAIEmbeddingClient(url, jsonKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
client = c
|
|
}
|
|
|
|
provider := VertexAIEmbeddingProvider{
|
|
fieldDim: fieldDim,
|
|
client: client,
|
|
modelName: modelName,
|
|
embedDimParam: dim,
|
|
task: task,
|
|
maxBatch: 128,
|
|
timeoutSec: 30,
|
|
}
|
|
return &provider, nil
|
|
}
|
|
|
|
func (provider *VertexAIEmbeddingProvider) MaxBatch() int {
|
|
return 5 * provider.maxBatch
|
|
}
|
|
|
|
func (provider *VertexAIEmbeddingProvider) FieldDim() int64 {
|
|
return provider.fieldDim
|
|
}
|
|
|
|
func (provider *VertexAIEmbeddingProvider) getTaskType(mode TextEmbeddingMode) string {
|
|
if mode == SearchMode {
|
|
switch provider.task {
|
|
case vertexAIDocRetrival:
|
|
return "RETRIEVAL_QUERY"
|
|
case vertexAICodeRetrival:
|
|
return "CODE_RETRIEVAL_QUERY"
|
|
case vertexAISTS:
|
|
return "SEMANTIC_SIMILARITY"
|
|
}
|
|
} else {
|
|
switch provider.task {
|
|
case vertexAIDocRetrival:
|
|
return "RETRIEVAL_DOCUMENT"
|
|
case vertexAICodeRetrival: // When inserting, the model does not distinguish between doc and code
|
|
return "RETRIEVAL_DOCUMENT"
|
|
case vertexAISTS:
|
|
return "SEMANTIC_SIMILARITY"
|
|
}
|
|
}
|
|
return ""
|
|
}
|
|
|
|
func (provider *VertexAIEmbeddingProvider) CallEmbedding(texts []string, mode TextEmbeddingMode) (any, error) {
|
|
numRows := len(texts)
|
|
taskType := provider.getTaskType(mode)
|
|
data := make([][]float32, 0, numRows)
|
|
for i := 0; i < numRows; i += provider.maxBatch {
|
|
end := i + provider.maxBatch
|
|
if end > numRows {
|
|
end = numRows
|
|
}
|
|
resp, err := provider.client.Embedding(provider.modelName, texts[i:end], provider.embedDimParam, taskType, provider.timeoutSec)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if end-i != len(resp.Predictions) {
|
|
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Predictions))
|
|
}
|
|
for _, item := range resp.Predictions {
|
|
if len(item.Embeddings.Values) != int(provider.fieldDim) {
|
|
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
|
|
provider.fieldDim, len(item.Embeddings.Values))
|
|
}
|
|
data = append(data, item.Embeddings.Values)
|
|
}
|
|
}
|
|
return data, nil
|
|
}
|