/* * # Licensed to the LF AI & Data foundation under one * # or more contributor license agreements. See the NOTICE file * # distributed with this work for additional information * # regarding copyright ownership. The ASF licenses this file * # to you under the Apache License, Version 2.0 (the * # "License"); you may not use this file except in compliance * # with the License. You may obtain a copy of the License at * # * # http://www.apache.org/licenses/LICENSE-2.0 * # * # Unless required by applicable law or agreed to in writing, software * # distributed under the License is distributed on an "AS IS" BASIS, * # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * # See the License for the specific language governing permissions and * # limitations under the License. */ package function import ( "fmt" "os" "strings" "sync" "github.com/cockroachdb/errors" "github.com/milvus-io/milvus-proto/go-api/v2/commonpb" "github.com/milvus-io/milvus-proto/go-api/v2/schemapb" "github.com/milvus-io/milvus/internal/util/credentials" "github.com/milvus-io/milvus/internal/util/function/models/vertexai" "github.com/milvus-io/milvus/pkg/v2/util/typeutil" ) type vertexAIJsonKey struct { mu sync.Mutex filePath string jsonKey []byte } var vtxKey vertexAIJsonKey func getVertexAIJsonKey() ([]byte, error) { vtxKey.mu.Lock() defer vtxKey.mu.Unlock() jsonKeyPath := os.Getenv(vertexServiceAccountJSONEnv) if jsonKeyPath == "" { return nil, errors.New("VetexAI credentials file path is empty") } if vtxKey.filePath == jsonKeyPath { return vtxKey.jsonKey, nil } jsonKey, err := os.ReadFile(jsonKeyPath) if err != nil { return nil, fmt.Errorf("Vertexai: read credentials file failed, %v", err) } vtxKey.jsonKey = jsonKey vtxKey.filePath = jsonKeyPath return vtxKey.jsonKey, nil } const ( vertexAIDocRetrival string = "DOC_RETRIEVAL" vertexAICodeRetrival string = "CODE_RETRIEVAL" vertexAISTS string = "STS" ) type VertexAIEmbeddingProvider struct { fieldDim int64 client *vertexai.VertexAIEmbedding modelName string embedDimParam int64 task string maxBatch int timeoutSec int64 } func createVertexAIEmbeddingClient(url string, credentialsJSON []byte) (*vertexai.VertexAIEmbedding, error) { c := vertexai.NewVertexAIEmbedding(url, credentialsJSON, "https://www.googleapis.com/auth/cloud-platform", "") return c, nil } func parseGcpCredentialInfo(credentials *credentials.Credentials, params []*commonpb.KeyValuePair, confParams map[string]string) ([]byte, error) { // function param > yaml > env var credentialsJSON []byte var err error for _, param := range params { switch strings.ToLower(param.Key) { case credentialParamKey: credentialName := param.Value if credentialsJSON, err = credentials.GetGcpCredential(credentialName); err != nil { return nil, err } } } // from milvus.yaml if credentialsJSON == nil { credentialName := confParams[credentialParamKey] if credentialName != "" { if credentialsJSON, err = credentials.GetGcpCredential(credentialName); err != nil { return nil, err } } } // from env if credentialsJSON == nil { credentialsJSON, err = getVertexAIJsonKey() if err != nil { return nil, err } } return credentialsJSON, nil } func NewVertexAIEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, c *vertexai.VertexAIEmbedding, params map[string]string, credentials *credentials.Credentials) (*VertexAIEmbeddingProvider, error) { fieldDim, err := typeutil.GetDim(fieldSchema) if err != nil { return nil, err } var location, projectID, task, modelName string var dim int64 for _, param := range functionSchema.Params { switch strings.ToLower(param.Key) { case modelNameParamKey: modelName = param.Value case dimParamKey: dim, err = parseAndCheckFieldDim(param.Value, fieldDim, fieldSchema.Name) if err != nil { return nil, err } case locationParamKey: location = param.Value case projectIDParamKey: projectID = param.Value case taskTypeParamKey: task = param.Value default: } } if task == "" { task = vertexAIDocRetrival } if location == "" { location = "us-central1" } url := params["url"] if url == "" { url = fmt.Sprintf("https://%s-aiplatform.googleapis.com/v1/projects/%s/locations/%s/publishers/google/models/%s:predict", location, projectID, location, modelName) } var client *vertexai.VertexAIEmbedding if c == nil { jsonKey, err := parseGcpCredentialInfo(credentials, functionSchema.Params, params) if err != nil { return nil, err } client, err = createVertexAIEmbeddingClient(url, jsonKey) if err != nil { return nil, err } } else { client = c } provider := VertexAIEmbeddingProvider{ fieldDim: fieldDim, client: client, modelName: modelName, embedDimParam: dim, task: task, maxBatch: 128, timeoutSec: 30, } return &provider, nil } func (provider *VertexAIEmbeddingProvider) MaxBatch() int { return 5 * provider.maxBatch } func (provider *VertexAIEmbeddingProvider) FieldDim() int64 { return provider.fieldDim } func (provider *VertexAIEmbeddingProvider) getTaskType(mode TextEmbeddingMode) string { if mode == SearchMode { switch provider.task { case vertexAIDocRetrival: return "RETRIEVAL_QUERY" case vertexAICodeRetrival: return "CODE_RETRIEVAL_QUERY" case vertexAISTS: return "SEMANTIC_SIMILARITY" } } else { switch provider.task { case vertexAIDocRetrival: return "RETRIEVAL_DOCUMENT" case vertexAICodeRetrival: // When inserting, the model does not distinguish between doc and code return "RETRIEVAL_DOCUMENT" case vertexAISTS: return "SEMANTIC_SIMILARITY" } } return "" } func (provider *VertexAIEmbeddingProvider) CallEmbedding(texts []string, mode TextEmbeddingMode) (any, error) { numRows := len(texts) taskType := provider.getTaskType(mode) data := make([][]float32, 0, numRows) for i := 0; i < numRows; i += provider.maxBatch { end := i + provider.maxBatch if end > numRows { end = numRows } resp, err := provider.client.Embedding(provider.modelName, texts[i:end], provider.embedDimParam, taskType, provider.timeoutSec) if err != nil { return nil, err } if end-i != len(resp.Predictions) { return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Predictions)) } for _, item := range resp.Predictions { if len(item.Embeddings.Values) != int(provider.fieldDim) { return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]", provider.fieldDim, len(item.Embeddings.Values)) } data = append(data, item.Embeddings.Values) } } return data, nil }