milvus/tests/python_client/bulk_insert/test_bulk_insert_bench.py

238 lines
9.3 KiB
Python
Raw Normal View History

import logging
import time
import pytest
from pymilvus import DataType
import numpy as np
from pathlib import Path
from base.client_base import TestcaseBase
from common import common_func as cf
from common import common_type as ct
from common.milvus_sys import MilvusSys
from common.common_type import CaseLabel, CheckTasks
from utils.util_log import test_log as log
from common.bulk_insert_data import (
prepare_bulk_insert_json_files,
prepare_bulk_insert_new_json_files,
prepare_bulk_insert_numpy_files,
prepare_bulk_insert_parquet_files,
prepare_bulk_insert_csv_files,
DataField as df,
)
default_vec_only_fields = [df.vec_field]
default_multi_fields = [
df.vec_field,
df.int_field,
df.string_field,
df.bool_field,
df.float_field,
df.array_int_field
]
default_vec_n_int_fields = [df.vec_field, df.int_field, df.array_int_field]
# milvus_ns = "chaos-testing"
base_dir = "/tmp/bulk_insert_data"
def entity_suffix(entities):
if entities // 1000000 > 0:
suffix = f"{entities // 1000000}m"
elif entities // 1000 > 0:
suffix = f"{entities // 1000}k"
else:
suffix = f"{entities}"
return suffix
class TestcaseBaseBulkInsert(TestcaseBase):
@pytest.fixture(scope="function", autouse=True)
def init_minio_client(self, minio_host):
Path("/tmp/bulk_insert_data").mkdir(parents=True, exist_ok=True)
self._connect()
self.milvus_sys = MilvusSys(alias='default')
ms = MilvusSys()
minio_port = "9000"
self.minio_endpoint = f"{minio_host}:{minio_port}"
self.bucket_name = ms.index_nodes[0]["infos"]["system_configurations"][
"minio_bucket_name"
]
class TestBulkInsertPerf(TestcaseBaseBulkInsert):
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("array_len", [100])
@pytest.mark.parametrize("enable_dynamic_field", [False])
def test_bulk_insert_all_field_with_parquet(self, auto_id, dim, file_size, file_nums, array_len, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=200),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_parquet_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=3000,
dim=dim,
data_fields=data_fields,
file_size=file_size,
row_group_size=None,
file_nums=file_nums,
array_length=array_len,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=1800
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("array_len", [100])
@pytest.mark.parametrize("enable_dynamic_field", [False])
def test_bulk_insert_all_field_with_json(self, auto_id, dim, file_size, file_nums, array_len, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=200),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_new_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=3000,
dim=dim,
data_fields=data_fields,
file_size=file_size,
file_nums=file_nums,
array_length=array_len,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=1800
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("enable_dynamic_field", [False])
def test_bulk_insert_all_field_with_numpy(self, auto_id, dim, file_size, file_nums, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_numpy_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=3000,
dim=dim,
data_fields=data_fields,
file_size=file_size,
file_nums=file_nums,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=1800
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success