test: add bulk insert benchmark for different file size (#29320)

add bulk insert benchmark for different file size

---------

Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
pull/29334/head
zhuwenxing 2023-12-20 09:26:49 +08:00 committed by GitHub
parent 1ee016709d
commit 9e846d8db2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 306 additions and 11 deletions

View File

@ -0,0 +1,236 @@
import logging
import time
import pytest
from pymilvus import DataType
import numpy as np
from pathlib import Path
from base.client_base import TestcaseBase
from common import common_func as cf
from common import common_type as ct
from common.milvus_sys import MilvusSys
from common.common_type import CaseLabel, CheckTasks
from utils.util_log import test_log as log
from common.bulk_insert_data import (
prepare_bulk_insert_json_files,
prepare_bulk_insert_new_json_files,
prepare_bulk_insert_numpy_files,
prepare_bulk_insert_parquet_files,
prepare_bulk_insert_csv_files,
DataField as df,
)
default_vec_only_fields = [df.vec_field]
default_multi_fields = [
df.vec_field,
df.int_field,
df.string_field,
df.bool_field,
df.float_field,
df.array_int_field
]
default_vec_n_int_fields = [df.vec_field, df.int_field, df.array_int_field]
# milvus_ns = "chaos-testing"
base_dir = "/tmp/bulk_insert_data"
def entity_suffix(entities):
if entities // 1000000 > 0:
suffix = f"{entities // 1000000}m"
elif entities // 1000 > 0:
suffix = f"{entities // 1000}k"
else:
suffix = f"{entities}"
return suffix
class TestcaseBaseBulkInsert(TestcaseBase):
@pytest.fixture(scope="function", autouse=True)
def init_minio_client(self, minio_host):
Path("/tmp/bulk_insert_data").mkdir(parents=True, exist_ok=True)
self._connect()
self.milvus_sys = MilvusSys(alias='default')
ms = MilvusSys()
minio_port = "9000"
self.minio_endpoint = f"{minio_host}:{minio_port}"
self.bucket_name = ms.index_nodes[0]["infos"]["system_configurations"][
"minio_bucket_name"
]
class TestBulkInsertPerf(TestcaseBaseBulkInsert):
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("array_len", [100])
@pytest.mark.parametrize("enable_dynamic_field", [False])
def test_bulk_insert_all_field_with_parquet(self, auto_id, dim, file_size, file_nums, array_len, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_parquet_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=3000,
dim=dim,
data_fields=data_fields,
file_size=file_size,
file_nums=file_nums,
array_length=array_len,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=1800
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("array_len", [100])
@pytest.mark.parametrize("enable_dynamic_field", [False])
def test_bulk_insert_all_field_with_json(self, auto_id, dim, file_size, file_nums, array_len, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_array_field(name=df.array_int_field, element_type=DataType.INT64),
cf.gen_array_field(name=df.array_float_field, element_type=DataType.FLOAT),
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR),
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_new_json_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=3000,
dim=dim,
data_fields=data_fields,
file_size=file_size,
file_nums=file_nums,
array_length=array_len,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=1800
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("auto_id", [True])
@pytest.mark.parametrize("dim", [128]) # 128
@pytest.mark.parametrize("file_size", [1, 10, 15]) # file size in GB
@pytest.mark.parametrize("file_nums", [1])
@pytest.mark.parametrize("enable_dynamic_field", [False])
def test_bulk_insert_all_field_with_numpy(self, auto_id, dim, file_size, file_nums, enable_dynamic_field):
"""
collection schema 1: [pk, int64, float64, string float_vector]
data file: vectors.parquet and uid.parquet,
Steps:
1. create collection
2. import data
3. verify
"""
fields = [
cf.gen_int64_field(name=df.pk_field, is_primary=True, auto_id=auto_id),
cf.gen_int64_field(name=df.int_field),
cf.gen_float_field(name=df.float_field),
cf.gen_double_field(name=df.double_field),
cf.gen_json_field(name=df.json_field),
cf.gen_float_vec_field(name=df.vec_field, dim=dim),
]
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
files = prepare_bulk_insert_numpy_files(
minio_endpoint=self.minio_endpoint,
bucket_name=self.bucket_name,
rows=3000,
dim=dim,
data_fields=data_fields,
file_size=file_size,
file_nums=file_nums,
enable_dynamic_field=enable_dynamic_field,
force=True,
)
self._connect()
c_name = cf.gen_unique_str("bulk_insert")
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
self.collection_wrap.init_collection(c_name, schema=schema)
# import data
t0 = time.time()
task_id, _ = self.utility_wrap.do_bulk_insert(
collection_name=c_name, files=files
)
logging.info(f"bulk insert task ids:{task_id}")
success, states = self.utility_wrap.wait_for_bulk_insert_tasks_completed(
task_ids=[task_id], timeout=1800
)
tt = time.time() - t0
log.info(f"bulk insert state:{success} in {tt} with states:{states}")
assert success

View File

@ -74,10 +74,12 @@ class TestBUlkInsertPerf(TestBulkInsertBase):
fields_name = ["id", "title", "text", "url", "wiki_id", "views", "paragraph_id", "langs", "emb"]
files = []
if file_type == "json":
files = ["json-train-00000-of-00252.json"]
files = ["train-00000-of-00252.json"]
if file_type == "npy":
for field_name in fields_name:
files.append(f"{field_name}.npy")
if file_type == "parquet":
files = ["train-00000-of-00252.parquet"]
checkers = {
Op.bulk_insert: BulkInsertChecker(collection_name=c_name, use_one_collection=False, schema=schema,
files=files, insert_data=False)

View File

@ -568,22 +568,40 @@ def gen_dict_data_by_data_field(data_fields, rows, start=0, float_vector=True, d
return data
def gen_new_json_files(float_vector, rows, dim, data_fields, file_nums=1, array_length=None, err_type="", enable_dynamic_field=False):
def gen_new_json_files(float_vector, rows, dim, data_fields, file_nums=1, array_length=None, file_size=None, err_type="", enable_dynamic_field=False):
files = []
if file_size is not None:
rows = 5000
start_uid = 0
for i in range(file_nums):
file_name = f"data-fields-{len(data_fields)}-rows-{rows}-dim-{dim}-file-num-{i}-{int(time.time())}.json"
file = f"{data_source}/{file_name}"
data = gen_dict_data_by_data_field(data_fields=data_fields, rows=rows, start=start_uid, float_vector=float_vector, dim=dim, array_length=array_length, enable_dynamic_field=enable_dynamic_field)
log.info(f"data: {data}")
# log.info(f"data: {data}")
with open(file, "w") as f:
json.dump(data, f)
# get the file size
if file_size is not None:
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
log.info(f"file_size with rows {rows} for {file_name}: {batch_file_size/1024/1024} MB")
# calculate the rows to be generated
total_batch = int(file_size*1024*1024*1024/batch_file_size)
total_rows = total_batch * rows
log.info(f"total_rows: {total_rows}")
all_data = []
for _ in range(total_batch):
all_data += data
file_name = f"data-fields-{len(data_fields)}-rows-{total_rows}-dim-{dim}-file-num-{i}-{int(time.time())}.json"
with open(f"{data_source}/{file_name}", "w") as f:
json.dump(all_data, f)
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
log.info(f"file_size with rows {total_rows} for {file_name}: {batch_file_size/1024/1024/1024} GB")
files.append(file_name)
start_uid += rows
return files
def gen_npy_files(float_vector, rows, dim, data_fields, file_nums=1, err_type="", force=False, enable_dynamic_field=False):
def gen_npy_files(float_vector, rows, dim, data_fields, file_size=None, file_nums=1, err_type="", force=False, enable_dynamic_field=False):
# gen numpy files
files = []
start_uid = 0
@ -606,6 +624,28 @@ def gen_npy_files(float_vector, rows, dim, data_fields, file_nums=1, err_type=""
if enable_dynamic_field:
file_name = gen_dynamic_field_in_numpy_file(dir=data_source, rows=rows, force=force)
files.append(file_name)
if file_size is not None:
batch_file_size = 0
for file_name in files:
batch_file_size += os.path.getsize(f"{data_source}/{file_name}")
log.info(f"file_size with rows {rows} for {files}: {batch_file_size/1024/1024} MB")
# calculate the rows to be generated
total_batch = int(file_size*1024*1024*1024/batch_file_size)
total_rows = total_batch * rows
new_files = []
for f in files:
arr = np.load(f"{data_source}/{f}")
all_arr = np.concatenate([arr for _ in range(total_batch)], axis=0)
file_name = f
np.save(f"{data_source}/{file_name}", all_arr)
log.info(f"file_name: {file_name} data type: {all_arr.dtype} data shape: {all_arr.shape}")
new_files.append(file_name)
files = new_files
batch_file_size = 0
for file_name in files:
batch_file_size += os.path.getsize(f"{data_source}/{file_name}")
log.info(f"file_size with rows {total_rows} for {files}: {batch_file_size/1024/1024/1024} GB")
else:
for i in range(file_nums):
subfolder = gen_subfolder(root=data_source, dim=dim, rows=rows, file_num=i)
@ -630,11 +670,14 @@ def gen_dynamic_field_data_in_parquet_file(rows, start=0):
return data
def gen_parquet_files(float_vector, rows, dim, data_fields, file_nums=1, array_length=None, err_type="", enable_dynamic_field=False):
def gen_parquet_files(float_vector, rows, dim, data_fields, file_size=None, file_nums=1, array_length=None, err_type="", enable_dynamic_field=False):
# gen numpy files
if err_type == "":
err_type = "none"
files = []
# generate 5000 entities and check the file size, then calculate the rows to be generated
if file_size is not None:
rows = 5000
start_uid = 0
if file_nums == 1:
all_field_data = {}
@ -648,6 +691,20 @@ def gen_parquet_files(float_vector, rows, dim, data_fields, file_nums=1, array_l
log.info(f"df: \n{df}")
file_name = f"data-fields-{len(data_fields)}-rows-{rows}-dim-{dim}-file-num-{file_nums}-error-{err_type}-{int(time.time())}.parquet"
df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow')
# get the file size
if file_size is not None:
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
log.info(f"file_size with rows {rows} for {file_name}: {batch_file_size/1024/1024} MB")
# calculate the rows to be generated
total_batch = int(file_size*1024*1024*1024/batch_file_size)
total_rows = total_batch * rows
all_df = pd.concat([df for _ in range(total_batch)], axis=0, ignore_index=True)
file_name = f"data-fields-{len(data_fields)}-rows-{total_rows}-dim-{dim}-file-num-{file_nums}-error-{err_type}-{int(time.time())}.parquet"
log.info(f"all df: \n {all_df}")
all_df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow')
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
log.info(f"file_size with rows {total_rows} for {file_name}: {batch_file_size/1024/1024} MB")
files.append(file_name)
else:
for i in range(file_nums):
@ -740,18 +797,18 @@ def prepare_bulk_insert_json_files(minio_endpoint="", bucket_name="milvus-bucket
def prepare_bulk_insert_new_json_files(minio_endpoint="", bucket_name="milvus-bucket",
rows=100, dim=128, float_vector=True,
rows=100, dim=128, float_vector=True, file_size=None,
data_fields=[], file_nums=1, enable_dynamic_field=False,
err_type="", force=False, **kwargs):
log.info(f"data_fields: {data_fields}")
files = gen_new_json_files(float_vector=float_vector, rows=rows, dim=dim, data_fields=data_fields, file_nums=file_nums, err_type=err_type, enable_dynamic_field=enable_dynamic_field, **kwargs)
files = gen_new_json_files(float_vector=float_vector, rows=rows, dim=dim, data_fields=data_fields, file_nums=file_nums, file_size=file_size, err_type=err_type, enable_dynamic_field=enable_dynamic_field, **kwargs)
copy_files_to_minio(host=minio_endpoint, r_source=data_source, files=files, bucket_name=bucket_name, force=force)
return files
def prepare_bulk_insert_numpy_files(minio_endpoint="", bucket_name="milvus-bucket", rows=100, dim=128, enable_dynamic_field=False,
def prepare_bulk_insert_numpy_files(minio_endpoint="", bucket_name="milvus-bucket", rows=100, dim=128, enable_dynamic_field=False, file_size=None,
data_fields=[DataField.vec_field], float_vector=True, file_nums=1, force=False):
"""
Generate column based files based on params in numpy format and copy them to the minio
@ -782,7 +839,7 @@ def prepare_bulk_insert_numpy_files(minio_endpoint="", bucket_name="milvus-bucke
Return: List
File name list or file name with sub-folder list
"""
files = gen_npy_files(rows=rows, dim=dim, float_vector=float_vector,
files = gen_npy_files(rows=rows, dim=dim, float_vector=float_vector, file_size=file_size,
data_fields=data_fields, enable_dynamic_field=enable_dynamic_field,
file_nums=file_nums, force=force)
@ -790,7 +847,7 @@ def prepare_bulk_insert_numpy_files(minio_endpoint="", bucket_name="milvus-bucke
return files
def prepare_bulk_insert_parquet_files(minio_endpoint="", bucket_name="milvus-bucket", rows=100, dim=128, array_length=None,
def prepare_bulk_insert_parquet_files(minio_endpoint="", bucket_name="milvus-bucket", rows=100, dim=128, array_length=None, file_size=None,
enable_dynamic_field=False, data_fields=[DataField.vec_field], float_vector=True, file_nums=1, force=False):
"""
Generate column based files based on params in parquet format and copy them to the minio
@ -822,7 +879,7 @@ def prepare_bulk_insert_parquet_files(minio_endpoint="", bucket_name="milvus-buc
File name list or file name with sub-folder list
"""
files = gen_parquet_files(rows=rows, dim=dim, float_vector=float_vector, enable_dynamic_field=enable_dynamic_field,
data_fields=data_fields, array_length=array_length,
data_fields=data_fields, array_length=array_length, file_size=file_size,
file_nums=file_nums)
copy_files_to_minio(host=minio_endpoint, r_source=data_source, files=files, bucket_name=bucket_name, force=force)
return files