website/content/zh/docs/concepts/configuration/manage-resources-containers.md

1306 lines
55 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: 为容器管理资源
content_type: concept
weight: 40
feature:
title: 自动装箱
description: >
根据资源需求和其他约束自动放置容器,同时避免影响可用性。将关键性工作负载和尽力而为性质的服务工作负载进行混合放置,以提高资源利用率并节省更多资源。
---
<!--
title: Managing Resources for Containers
content_type: concept
weight: 40
feature:
title: Automatic binpacking
description: >
Automatically places containers based on their resource requirements and other constraints, while not sacrificing availability. Mix critical and best-effort workloads in order to drive up utilization and save even more resources.
-->
<!-- overview -->
<!--
When you specify a {{< glossary_tooltip term_id="pod" >}}, you can optionally specify how
much of each resource a {{< glossary_tooltip text="Container" term_id="container" >}} needs.
The most common resources to specify are CPU and memory (RAM); there are others.
When you specify the resource _request_ for Containers in a Pod, the scheduler uses this
information to decide which node to place the Pod on. When you specify a resource _limit_
for a Container, the kubelet enforces those limits so that the running container is not
allowed to use more of that resource than the limit you set. The kubelet also reserves
at least the _request_ amount of that system resource specifically for that container
to use.
-->
当你定义 {{< glossary_tooltip text="Pod" term_id="pod" >}} 时可以选择性地为每个
{{< glossary_tooltip text="容器" term_id="container" >}}设定所需要的资源数量。
最常见的可设定资源是 CPU 和内存RAM大小此外还有其他类型的资源。
当你为 Pod 中的 Container 指定了资源 __请求__ 时,调度器就利用该信息决定将 Pod 调度到哪个节点上。
当你还为 Container 指定了资源 __约束__ 时kubelet 就可以确保运行的容器不会使用超出所设约束的资源。
kubelet 还会为容器预留所 __请求__ 数量的系统资源,供其使用。
<!-- body -->
<!--
## Requests and limits
If the node where a Pod is running has enough of a resource available, it's possible (and
allowed) for a container to use more resource than its `request` for that resource specifies.
However, a container is not allowed to use more than its resource `limit`.
For example, if you set a `memory` request of 256 MiB for a container, and that container is in
a Pod scheduled to a Node with 8GiB of memory and no other Pods, then the container can try to use
more RAM.
-->
## 请求和约束 {#requests-and-limits}
如果 Pod 运行所在的节点具有足够的可用资源,容器可能(且可以)使用超出对应资源
`request` 属性所设置的资源量。不过,容器不可以使用超出其资源 `limit`
属性所设置的资源量。
例如,如果你将容器的 `memory` 的请求量设置为 256 MiB而该容器所处的 Pod
被调度到一个具有 8 GiB 内存的节点上,并且该节点上没有其他 Pods
运行,那么该容器就可以尝试使用更多的内存。
<!--
If you set a `memory` limit of 4GiB for that Container, the kubelet (and
{{< glossary_tooltip text="container runtime" term_id="container-runtime" >}}) enforce the limit.
The runtime prevents the container from using more than the configured resource limit. For example:
when a process in the container tries to consume more than the allowed amount of memory,
the system kernel terminates the process that attempted the allocation, with an out of memory
(OOM) error.
Limits can be implemented either reactively (the system intervenes once it sees a violation)
or by enforcement (the system prevents the container from ever exceeding the limit). Different
runtimes can have different ways to implement the same restrictions.
-->
如果你将某容器的 `memory` 约束设置为 4 GiBkubelet (和
{{< glossary_tooltip text="容器运行时" term_id="container-runtime" >}}
就会确保该约束生效。
容器运行时会禁止容器使用超出所设置资源约束的资源。
例如:当容器中进程尝试使用超出所允许内存量的资源时,系统内核会将尝试申请内存的进程终止,
并引发内存不足OOM错误。
约束值可以以被动方式来实现(系统会在发现违例时进行干预),或者通过强制生效的方式实现
(系统会避免容器用量超出约束值)。不同的容器运行时采用不同方式来实现相同的限制。
<!--
## Resource types
*CPU* and *memory* are each a *resource type*. A resource type has a base unit.
CPU represents compute processing and is specified in units of [Kubernetes CPUs](#meaning-of-cpu).
Memory is specified in units of bytes.
If you're using Kubernetes v1.14 or newer, you can specify _huge page_ resources.
Huge pages are a Linux-specific feature where the node kernel allocates blocks of memory
that are much larger than the default page size.
For example, on a system where the default page size is 4KiB, you could specify a limit,
`hugepages-2Mi: 80Mi`. If the container tries allocating over 40 2MiB huge pages (a
total of 80 MiB), that allocation fails.
-->
## 资源类型 {#resource-types}
*CPU* 和*内存*都是*资源类型*。每种资源类型具有其基本单位。
CPU 表达的是计算处理能力,其单位是 [Kubernetes CPUs](#meaning-of-cpu)。
内存的单位是字节。
如果你使用的是 Kubernetes v1.14 或更高版本则可以指定巨页Huge Page资源。
巨页是 Linux 特有的功能,节点内核在其中分配的内存块比默认页大小大得多。
例如,在默认页面大小为 4KiB 的系统上,您可以指定约束 `hugepages-2Mi: 80Mi`
如果容器尝试分配 40 个 2MiB 大小的巨页(总共 80 MiB ),则分配请求会失败。
<!--
{{< note >}}
You cannot overcommit `hugepages-*` resources.
This is different from the `memory` and `cpu` resources.
{{< /note >}}
CPU and memory are collectively referred to as *compute resources*, or just
*resources*. Compute
resources are measurable quantities that can be requested, allocated, and
consumed. They are distinct from
[API resources](/docs/concepts/overview/kubernetes-api/). API resources, such as Pods and
[Services](/docs/concepts/services-networking/service/) are objects that can be read and modified
through the Kubernetes API server.
-->
{{< note >}}
您不能过量使用 `hugepages- * `资源。
这与 `memory``cpu` 资源不同。
{{< /note >}}
CPU 和内存统称为*计算资源*,或简称为*资源*。
计算资源的数量是可测量的,可以被请求、被分配、被消耗。
它们与 [API 资源](/zh/docs/concepts/overview/kubernetes-api/) 不同。
API 资源(如 Pod 和 [Service](/zh/docs/concepts/services-networking/service/))是可通过
Kubernetes API 服务器读取和修改的对象。
<!--
## Resource requests and limits of Pod and Container
Each Container of a Pod can specify one or more of the following:
* `spec.containers[].resources.limits.cpu`
* `spec.containers[].resources.limits.memory`
* `spec.containers[].resources.limits.hugepages-<size>`
* `spec.containers[].resources.requests.cpu`
* `spec.containers[].resources.requests.memory`
* `spec.containers[].resources.requests.hugepages-<size>`
Although requests and limits can only be specified on individual Containers, it
is convenient to talk about Pod resource requests and limits. A
*Pod resource request/limit* for a particular resource type is the sum of the
resource requests/limits of that type for each Container in the Pod.
-->
## Pod 和 容器的资源请求和约束
Pod 中的每个容器都可以指定以下的一个或者多个值:
- `spec.containers[].resources.limits.cpu`
- `spec.containers[].resources.limits.memory`
- `spec.containers[].resources.limits.hugepages-<size>`
- `spec.containers[].resources.requests.cpu`
- `spec.containers[].resources.requests.memory`
- `spec.containers[].resources.requests.hugepages-<size>`
尽管请求和限制值只能在单个容器上指定,我们仍可方便地计算出 Pod 的资源请求和约束。
Pod 对特定资源类型的请求/约束值是 Pod 中各容器对该类型资源的请求/约束值的总和。
<!--
## Resource units in Kubernetes
### Meaning of CPU
Limits and requests for CPU resources are measured in *cpu* units.
One cpu, in Kubernetes, is equivalent to **1 vCPU/Core** for cloud providers and **1 hyperthread** on bare-metal Intel processors.
Fractional requests are allowed. A Container with
`spec.containers[].resources.requests.cpu` of `0.5` is guaranteed half as much
CPU as one that asks for 1 CPU. The expression `0.1` is equivalent to the
expression `100m`, which can be read as "one hundred millicpu". Some people say
"one hundred millicores", and this is understood to mean the same thing. A
request with a decimal point, like `0.1`, is converted to `100m` by the API, and
precision finer than `1m` is not allowed. For this reason, the form `100m` might
be preferred.
CPU is always requested as an absolute quantity, never as a relative quantity;
0.1 is the same amount of CPU on a single-core, dual-core, or 48-core machine.
-->
## CPU 的含义 {#meaning-of-cpu}
CPU 资源的约束和请求以 *cpu* 为单位。
Kubernetes 中的一个 cpu 等于云平台上的 **1 个 vCPU/核**和裸机 Intel
处理器上的 **1 个超线程 **
你也可以表达带小数 CPU 的请求。`spec.containers[].resources.requests.cpu` 为 0.5
的 Container 肯定能够获得请求 1 CPU 的容器的一半 CPU 资源。表达式 `0.1` 等价于表达式 `100m`
可以看作 “100 millicpu”。有些人说成是“一百毫 cpu”其实说的是同样的事情。
具有小数点(如 `0.1`)的请求由 API 转换为 `100m`;最大精度是 `1m`
因此,或许你应该优先考虑使用 `100m` 的形式。
CPU 总是按绝对数量来请求的,不可以使用相对数量;
0.1 的 CPU 在单核、双核、48 核的机器上的意义是一样的。
<!--
## Meaning of memory
Limits and requests for `memory` are measured in bytes. You can express memory as
a plain integer or as a fixed-point number using one of these suffixes:
E, P, T, G, M, K. You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi,
Mi, Ki. For example, the following represent roughly the same value:
-->
## 内存的含义 {#meaning-of-memory}
内存的约束和请求以字节为单位。你可以使用以下后缀之一以一般整数或定点数字形式来表示内存:
E、P、T、G、M、K。你也可以使用对应的 2 的幂数Ei、Pi、Ti、Gi、Mi、Ki。
例如,以下表达式所代表的是大致相同的值:
```shell
128974848、129e6、129M、123Mi
```
<!--
Here's an example.
The following Pod has two Containers. Each Container has a request of 0.25 cpu
and 64MiB (2<sup>26</sup> bytes) of memory. Each Container has a limit of 0.5
cpu and 128MiB of memory. You can say the Pod has a request of 0.5 cpu and 128
MiB of memory, and a limit of 1 cpu and 256MiB of memory.
-->
下面是个例子。
以下 Pod 有两个 Container。每个 Container 的请求为 0.25 cpu 和 64MiB2<sup>26</sup> 字节)内存,
每个容器的资源约束为 0.5 cpu 和 128MiB 内存。
你可以认为该 Pod 的资源请求为 0.5 cpu 和 128 MiB 内存,资源限制为 1 cpu 和 256MiB 内存。
```yaml
apiVersion: v1
kind: Pod
metadata:
name: frontend
spec:
containers:
- name: app
image: images.my-company.example/app:v4
env:
- name: MYSQL_ROOT_PASSWORD
value: "password"
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
- name: log-aggregator
image: images.my-company.example/log-aggregator:v6
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
```
<!--
## How Pods with resource requests are scheduled
When you create a Pod, the Kubernetes scheduler selects a node for the Pod to
run on. Each node has a maximum capacity for each of the resource types: the
amount of CPU and memory it can provide for Pods. The scheduler ensures that,
for each resource type, the sum of the resource requests of the scheduled
Containers is less than the capacity of the node. Note that although actual memory
or CPU resource usage on nodes is very low, the scheduler still refuses to place
a Pod on a node if the capacity check fails. This protects against a resource
shortage on a node when resource usage later increases, for example, during a
daily peak in request rate.
-->
## 带资源请求的 Pod 如何调度
当你创建一个 Pod 时Kubernetes 调度程序将为 Pod 选择一个节点。
每个节点对每种资源类型都有一个容量上限:可为 Pod 提供的 CPU 和内存量。
调度程序确保对于每种资源类型,所调度的容器的资源请求的总和小于节点的容量。
请注意,尽管节点上的实际内存或 CPU 资源使用量非常低,如果容量检查失败,
调度程序仍会拒绝在该节点上放置 Pod。
当稍后节点上资源用量增加,例如到达请求率的每日峰值区间时,节点上也不会出现资源不足的问题。
<!--
## How Pods with resource limits are run
When the kubelet starts a Container of a Pod, it passes the CPU and memory limits
to the container runtime.
When using Docker:
-->
## 带资源约束的 Pod 如何运行
当 kubelet 启动 Pod 中的 Container 时,它会将 CPU 和内存约束信息传递给容器运行时。
当使用 Docker 时:
<!--
- The `spec.containers[].resources.requests.cpu` is converted to its core value,
which is potentially fractional, and multiplied by 1024. The greater of this number
or 2 is used as the value of the
[`--cpu-shares`](https://docs.docker.com/engine/reference/run/#cpu-share-constraint)
flag in the `docker run` command.
- The `spec.containers[].resources.limits.cpu` is converted to its millicore value and
multiplied by 100. The resulting value is the total amount of CPU time that a container can use
every 100ms. A container cannot use more than its share of CPU time during this interval.
{{< note >}}
The default quota period is 100ms. The minimum resolution of CPU quota is 1ms.
{{</ note >}}
- The `spec.containers[].resources.limits.memory` is converted to an integer, and
used as the value of the
[`--memory`](https://docs.docker.com/engine/reference/run/#/user-memory-constraints)
flag in the `docker run` command.
-->
- `spec.containers[].resources.requests.cpu` 先被转换为可能是小数的基础值,再乘以 1024。
这个数值和 2 的较大者用作 `docker run` 命令中的
[`--cpu-shares`](https://docs.docker.com/engine/reference/run/#/cpu-share-constraint)
标志的值。
- `spec.containers[].resources.limits.cpu` 先被转换为 millicore 值,再乘以 100。
其结果就是每 100 毫秒内容器可以使用的 CPU 时间总量。在此期间100ms容器所使用的 CPU
时间不会超过它被分配的时间。
{{< note >}}
默认的配额quota周期为 100 毫秒。 CPU配额的最小精度为 1 毫秒。
{{</ note >}}
- `spec.containers[].resources.limits.memory` 被转换为整数值,作为 `docker run` 命令中的
[`--memory`](https://docs.docker.com/engine/reference/run/#/user-memory-constraints)
参数值。
<!--
If a Container exceeds its memory limit, it might be terminated. If it is
restartable, the kubelet will restart it, as with any other type of runtime
failure.
If a Container exceeds its memory request, it is likely that its Pod will
be evicted whenever the node runs out of memory.
A Container might or might not be allowed to exceed its CPU limit for extended
periods of time. However, it will not be killed for excessive CPU usage.
To determine whether a Container cannot be scheduled or is being killed due to
resource limits, see the
[Troubleshooting](#troubleshooting) section.
-->
如果 Container 超过其内存限制,则可能会被终止。如果容器可重新启动,则与所有其他类型的
运行时失效一样kubelet 将重新启动容器。
如果一个 Container 内存用量超过其内存请求值,那么当节点内存不足时,容器所处的 Pod 可能被逐出。
每个 Container 可能被允许也可能不被允许使用超过其 CPU 约束的处理时间。
但是,容器不会由于 CPU 使用率过高而被杀死。
要确定 Container 是否会由于资源约束而无法调度或被杀死,请参阅[疑难解答](#troubleshooting) 部分。
<!--
## Monitoring compute & memory resource usage
The resource usage of a Pod is reported as part of the Pod status.
If optional [tools for monitoring](/docs/tasks/debug-application-cluster/resource-usage-monitoring/)
are available in your cluster, then Pod resource usage can be retrieved either
from the [Metrics API](/docs/tasks/debug-application-cluster/resource-metrics-pipeline/#the-metrics-api)
directly or from your monitoring tools.
-->
## 监控计算和内存资源用量
Pod 的资源使用情况是作为 Pod 状态的一部分来报告的。
如果为集群配置了可选的
[监控工具](/zh/docs/tasks/debug-application-cluster/resource-usage-monitoring/)
则可以直接从
[指标 API](/zh/docs/tasks/debug-application-cluster/resource-metrics-pipeline/#the-metrics-api)
或者监控工具获得 Pod 的资源使用情况。
<!--
## Local ephemeral storage
Nodes have local ephemeral storage, backed by
locally-attached writeable devices or, sometimes, by RAM.
"Ephemeral" means that there is no long-term guarantee about durability.
Pods use ephemeral local storage for scratch space, caching, and for logs.
The kubelet can provide scratch space to Pods using local ephemeral storage to
mount [`emptyDir`](https://kubernetes.io/docs/concepts/storage/volumes/#emptydir)
{{< glossary_tooltip term_id="volume" text="volumes" >}} into containers.
-->
## 本地临时存储 {#local-ephemeral-storage}
<!-- feature gate LocalStorageCapacityIsolation -->
{{< feature-state for_k8s_version="v1.10" state="beta" >}}
节点通常还可以具有本地的临时性存储,由本地挂接的可写入设备或者有时也用 RAM
来提供支持。
“临时Ephemeral”意味着对所存储的数据不提供长期可用性的保证。
Pods 通常可以使用临时性本地存储来实现缓冲区、保存日志等功能。
kubelet 可以为使用本地临时存储的 Pods 提供这种存储空间,允许后者使用
[`emptyDir`](/zh/docs/concepts/storage/volumes/#emptydir) 类型的
{{< glossary_tooltip term_id="volume" text="卷" >}}将其挂载到容器中。
<!--
The kubelet also uses this kind of storage to hold
[node-level container logs](/docs/concepts/cluster-administration/logging/#logging-at-the-node-level),
container images, and the writable layers of running containers.
{{< caution >}}
If a node fails, the data in its ephemeral storage can be lost.
Your applications cannot expect any performance SLAs (disk IOPS for example)
from local ephemeral storage.
{{< /caution >}}
As a beta feature, Kubernetes lets you track, reserve and limit the amount
of ephemeral local storage a Pod can consume.
-->
kubelet 也使用此类存储来保存
[节点层面的容器日志](/zh/docs/concepts/cluster-administration/logging/#logging-at-the-node-level)
容器镜像文件、以及运行中容器的可写入层。
{{< caution >}}
如果节点失效,存储在临时性存储中的数据会丢失。
你的应用不能对本地临时性存储的性能 SLA例如磁盘 IOPS作任何假定。
{{< /caution >}}
作为一种 beta 阶段功能特性Kubernetes 允许你跟踪、预留和限制 Pod
可消耗的临时性本地存储数量。
<!--
### Configurations for local ephemeral storage
Kubernetes supports two ways to configure local ephemeral storage on a node:
In this configuration, you place all different kinds of ephemeral local data
(`emptyDir` volumes, writeable layers, container images, logs) into one filesystem.
The most effective way to configure the kubelet means dedicating this filesystem
to Kubernetes (kubelet) data.
The kubelet also writes
[node-level container logs](/docs/concepts/cluster-administration/logging/#logging-at-the-node-level)
and treats these similarly to ephemeral local storage.
-->
### 本地临时性存储的配置
Kubernetes 有两种方式支持节点上配置本地临时性存储:
{{< tabs name="local_storage_configurations" >}}
{{% tab name="单一文件系统" %}}
采用这种配置时,你会把所有类型的临时性本地数据(包括 `emptyDir`
卷、可写入容器层、容器镜像、日志等)放到同一个文件系统中。
作为最有效的 kubelet 配置方式,这意味着该文件系统是专门提供给 Kubernetes
kubelet来保存数据的。
kubelet 也会生成
[节点层面的容器日志](/zh/docs/concepts/cluster-administration/logging/#logging-at-the-node-level)
并按临时性本地存储的方式对待之。
<!--
The kubelet writes logs to files inside its configured log directory (`/var/log`
by default); and has a base directory for other locally stored data
(`/var/lib/kubelet` by default).
Typically, both `/var/lib/kubelet` and `/var/log` are on the system root filesystem,
and the kubelet is designed with that layout in mind.
Your node can have as many other filesystems, not used for Kubernetes,
as you like.
-->
kubelet 会将日志写入到所配置的日志目录(默认为 `/var/log`)下的文件中;
还会针对其他本地存储的数据使用同一个基础目录(默认为 `/var/lib/kubelet`)。
通常,`/var/lib/kubelet` 和 `/var/log` 都是在系统的根文件系统中。kubelet
的设计也考虑到这一点。
你的集群节点当然可以包含其他的、并非用于 Kubernetes 的很多文件系统。
{{% /tab %}}
<!--
You have a filesystem on the node that you're using for ephemeral data that
comes from running Pods: logs, and `emptyDir` volumes. You can use this filesystem
for other data (for example: system logs not related to Kubernetes); it can even
be the root filesystem.
The kubelet also writes
[node-level container logs](/docs/concepts/cluster-administration/logging/#logging-at-the-node-level)
into the first filesystem, and treats these similarly to ephemeral local storage.
You also use a separate filesystem, backed by a different logical storage device.
In this configuration, the directory where you tell the kubelet to place
container image layers and writeable layers is on this second filesystem.
The first filesystem does not hold any image layers or writeable layers.
Your node can have as many other filesystems, not used for Kubernetes,
as you like.
-->
{{% tab name="双文件系统" %}}
你使用节点上的某个文件系统来保存运行 Pods 时产生的临时性数据:日志和
`emptyDir` 卷等。你可以使用这个文件系统来保存其他数据(例如:与 Kubernetes
无关的其他系统日志);这个文件系统还可以是根文件系统。
kubelet 也将
[节点层面的容器日志](/zh/docs/concepts/cluster-administration/logging/#logging-at-the-node-level)
写入到第一个文件系统中,并按临时性本地存储的方式对待之。
同时你使用另一个由不同逻辑存储设备支持的文件系统。在这种配置下,你会告诉
kubelet 将容器镜像层和可写层保存到这第二个文件系统上的某个目录中。
第一个文件系统中不包含任何镜像层和可写层数据。
当然,你的集群节点上还可以有很多其他与 Kubernetes 没有关联的文件系统。
{{% /tab %}}
{{< /tabs >}}
<!--
The kubelet can measure how much local storage it is using. It does this provided
that:
- the `LocalStorageCapacityIsolation`
[feature gate](/docs/reference/command-line-tools-reference/feature-gates/)
is enabled (the feature is on by default), and
- you have set up the node using one of the supported configurations
for local ephemeral storage.
If you have a different configuration, then the kubelet does not apply resource
limits for ephemeral local storage.
{{< note >}}
The kubelet tracks `tmpfs` emptyDir volumes as container memory use, rather
than as local ephemeral storage.
{{< /note >}}
-->
kubelet 能够度量其本地存储的用量。实现度量机制的前提是:
- `LocalStorageCapacityIsolation` [特性门控](/zh/docs/reference/command-line-tools-reference/feature-gates/)被启用(默认状态),并且
- 你已经对节点进行了配置,使之使用所支持的本地临时性储存配置方式之一
如果你的节点配置不同于以上预期kubelet 就无法对临时性本地存储的资源约束实施限制。
{{< note >}}
kubelet 会将 `tmpfs` emptyDir 卷的用量当作容器内存用量,而不是本地临时性存储来统计。
{{< /note >}}
<!--
### Setting requests and limits for local ephemeral storage
You can use _ephemeral-storage_ for managing local ephemeral storage. Each Container of a Pod can specify one or more of the following:
* `spec.containers[].resources.limits.ephemeral-storage`
* `spec.containers[].resources.requests.ephemeral-storage`
Limits and requests for `ephemeral-storage` are measured in bytes. You can express storage as
a plain integer or as a fixed-point number using one of these suffixes:
E, P, T, G, M, K. You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi,
Mi, Ki. For example, the following represent roughly the same value:
```shell
128974848, 129e6, 129M, 123Mi
```
-->
### 为本地临时性存储设置请求和约束值
你可以使用_ephemeral-storage_来管理本地临时性存储。
Pod 中的每个 Container 可以设置以下属性:
* `spec.containers[].resources.limits.ephemeral-storage`
* `spec.containers[].resources.requests.ephemeral-storage`
`ephemeral-storage` 的请求和约束值是按字节计量的。你可以使用一般整数或者定点数字
加上下面的后缀来表达存储量E、P、T、G、M、K。
你也可以使用对应的 2 的幂级数来表达Ei、Pi、Ti、Gi、Mi、Ki。
例如,下面的表达式所表达的大致是同一个值:
```shell
128974848, 129e6, 129M, 123Mi
```
<!--
In the following example, the Pod has two Containers. Each Container has a request of 2GiB of local ephemeral storage. Each Container has a limit of 4GiB of local ephemeral storage. Therefore, the Pod has a request of 4GiB of local ephemeral storage, and a limit of 8GiB of local ephemeral storage.
-->
在下面的例子中Pod 包含两个 Container。每个 Container 请求 2 GiB 大小的本地临时性存储。
每个 Container 都设置了 4 GiB 作为其本地临时性存储的约束值。
因此,整个 Pod 的本地临时性存储请求是 4 GiB且其本地临时性存储的约束为 8 GiB。
```yaml
apiVersion: v1
kind: Pod
metadata:
name: frontend
spec:
containers:
- name: app
image: images.my-company.example/app:v4
resources:
requests:
ephemeral-storage: "2Gi"
limits:
ephemeral-storage: "4Gi"
- name: log-aggregator
image: images.my-company.example/log-aggregator:v6
resources:
requests:
ephemeral-storage: "2Gi"
limits:
ephemeral-storage: "4Gi"
```
<!--
### How Pods with ephemeral-storage requests are scheduled
When you create a Pod, the Kubernetes scheduler selects a node for the Pod to
run on. Each node has a maximum amount of local ephemeral storage it can provide for Pods. For more information, see [Node Allocatable](/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable).
The scheduler ensures that the sum of the resource requests of the scheduled Containers is less than the capacity of the node.
-->
### 带 ephemeral-storage 的 Pods 的调度行为
当你创建一个 Pod 时Kubernetes 调度器会为 Pod 选择一个节点来运行之。
每个节点都有一个本地临时性存储的上限,是其可提供给 Pods 使用的总量。
欲了解更多信息,可参考
[节点可分配资源](/zh/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable)
节。
调度器会确保所调度的 Containers 的资源请求总和不会超出节点的资源容量。
<!--
### Ephemeral storage consumption management {#resource-emphemeralstorage-consumption}
If the kubelet is managing local ephemeral storage as a resource, then the
kubelet measures storage use in:
- `emptyDir` volumes, except _tmpfs_ `emptyDir` volumes
- directories holding node-level logs
- writeable container layers
If a Pod is using more ephemeral storage than you allow it to, the kubelet
sets an eviction signal that triggers Pod eviction.
For container-level isolation, if a Container's writable layer and log
usage exceeds its storage limit, the kubelet marks the Pod for eviction.
For pod-level isolation the kubelet works out an overall Pod storage limit by
summing the limits for the containers in that Pod. In this case, if the sum of
the local ephemeral storage usage from all containers and also the Pod's `emptyDir`
volumes exceeds the overall Pod storage limit, then the kubelet also marks the Pod
for eviction.
-->
### 临时性存储消耗的管理 {#resource-emphemeralstorage-consumption}
如果 kubelet 将本地临时性存储作为资源来管理,则 kubelet 会度量以下各处的存储用量:
- `emptyDir` 卷,除了 _tmpfs_ `emptyDir`
- 保存节点层面日志的目录
- 可写入的容器镜像层
如果某 Pod 的临时存储用量超出了你所允许的范围kubelet
会向其发出逐出eviction信号触发该 Pod 被逐出所在节点。
就容器层面的隔离而言,如果某容器的可写入镜像层和日志用量超出其存储约束,
kubelet 也会将所在的 Pod 标记为逐出候选。
就 Pod 层面的隔离而言kubelet 会将 Pod 中所有容器的约束值相加,得到 Pod
存储约束的总值。如果所有容器的本地临时性存储用量总和加上 Pod 的 `emptyDir`
卷的用量超出 Pod 存储约束值kubelet 也会将该 Pod 标记为逐出候选。
<!--
{{< caution >}}
If the kubelet is not measuring local ephemeral storage, then a Pod
that exceeds its local storage limit will not be evicted for breaching
local storage resource limits.
However, if the filesystem space for writeable container layers, node-level logs,
or `emptyDir` volumes falls low, the node
{{< glossary_tooltip text="taints" term_id="taint" >}} itself as short on local storage
and this taint triggers eviction for any Pods that don't specifically tolerate the taint.
See the supported [configurations](#configurations-for-local-ephemeral-storage)
for ephemeral local storage.
{{< /caution >}}
-->
{{< caution >}}
如果 kubelet 没有度量本地临时性存储的用量,即使 Pod
的本地存储用量超出其约束值也不会被逐出。
不过,如果用于可写入容器镜像层、节点层面日志或者 `emptyDir` 卷的文件系统中可用空间太少,
节点会为自身设置本地存储不足的{{< glossary_tooltip text="污点" term_id="taint" >}} 标签。
这一污点会触发对那些无法容忍该污点的 Pods 的逐出操作。
关于临时性本地存储的配置信息,请参考[这里](#configurations-for-local-ephemeral-storage)
{{< /caution >}}
<!--
The kubelet supports different ways to measure Pod storage use:
The kubelet performs regular, schedules checks that scan each
`emptyDir` volume, container log directory, and writeable container layer.
The scan measures how much space is used.
{{< note >}}
In this mode, the kubelet does not track open file descriptors
for deleted files.
If you (or a container) create a file inside an `emptyDir` volume,
something then opens that file, and you delete the file while it is
still open, then the inode for the deleted file stays until you close
that file but the kubelet does not categorize the space as in use.
{{< /note >}}
-->
kubelet 支持使用不同方式来度量 Pod 的存储用量:
{{< tabs name="resource-emphemeralstorage-measurement" >}}
{{% tab name="周期性扫描" %}}
kubelet 按预定周期执行扫描操作,检查 `emptyDir` 卷、容器日志目录以及可写入容器镜像层。
这一扫描会度量存储空间用量。
{{< note >}}
在这种模式下kubelet 并不检查已删除文件所对应的、仍处于打开状态的文件描述符。
如果你(或者容器)在 `emptyDir` 卷中创建了一个文件,写入一些内容之后再次打开
该文件并执行了删除操作,所删除文件对应的 inode 仍然存在,直到你关闭该文件为止。
kubelet 不会将该文件所占用的空间视为已使用空间。
{{< /note >}}
{{% /tab %}}
<!--
Project quotas are an operating-system level feature for managing
storage use on filesystems. With Kubernetes, you can enable project
quotas for monitoring storage use. Make sure that the filesystem
backing the `emptyDir` volumes, on the node, provides project quota support.
For example, XFS and ext4fs offer project quotas.
{{< note >}}
Project quotas let you monitor storage use; they do not enforce limits.
{{< /note >}}
-->
{{% tab name="文件系统项目配额" %}}
{{< feature-state for_k8s_version="v1.15" state="alpha" >}}
项目配额Project Quota是一个操作系统层的功能特性用来管理文件系统中的存储用量。
在 Kubernetes 中,你可以启用项目配额以监视存储用量。
你需要确保节点上为 `emptyDir` 提供存储的文件系统支持项目配额。
例如XFS 和 ext4fs 文件系统都支持项目配额。
{{< note >}}
项目配额可以帮你监视存储用量,但无法对存储约束执行限制。
{{< /note >}}
<!--
Kubernetes uses project IDs starting from `1048576`. The IDs in use are
registered in `/etc/projects` and `/etc/projid`. If project IDs in
this range are used for other purposes on the system, those project
IDs must be registered in `/etc/projects` and `/etc/projid` so that
Kubernetes does not use them.
Quotas are faster and more accurate than directory scanning. When a
directory is assigned to a project, all files created under a
directory are created in that project, and the kernel merely has to
keep track of how many blocks are in use by files in that project.
If a file is created and deleted, but has an open file descriptor,
it continues to consume space. Quota tracking records that space accurately
whereas directory scans overlook the storage used by deleted files.
-->
Kubernetes 所使用的项目 ID 始于 `1048576`
所使用的 IDs 会注册在 `/etc/projects``/etc/projid` 文件中。
如果该范围中的项目 ID 已经在系统中被用于其他目的,则已占用的项目 IDs
也必须注册到 `/etc/projects``/etc/projid` 中,这样 Kubernetes
才不会使用它们。
配额方式与目录扫描方式相比速度更快,结果更精确。当某个目录被分配给某个项目时,
该目录下所创建的所有文件都属于该项目,内核只需要跟踪该项目中的文件所使用的存储块个数。
如果某文件被创建后又被删除,但对应文件描述符仍处于打开状态,
该文件会继续耗用存储空间。配额跟踪技术能够精确第记录对应存储空间的状态,
而目录扫描方式会忽略被删除文件所占用的空间。
<!--
If you want to use project quotas, you should:
* Enable the `LocalStorageCapacityIsolationFSQuotaMonitoring=true`
[feature gate](/docs/reference/command-line-tools-reference/feature-gates/)
in the kubelet configuration.
* Ensure that the root filesystem (or optional runtime filesystem)
has project quotas enabled. All XFS filesystems support project quotas.
For ext4 filesystems, you need to enable the project quota tracking feature
while the filesystem is not mounted.
```bash
# For ext4, with /dev/block-device not mounted
sudo tune2fs -O project -Q prjquota /dev/block-device
```
* Ensure that the root filesystem (or optional runtime filesystem) is
mounted with project quotas enabled. For both XFS and ext4fs, the
mount option is named `prjquota`.
-->
如果你希望使用项目配额,你需要:
* 在 kubelet 配置中启用 `LocalStorageCapacityIsolationFSQuotaMonitoring=true`
[特性门控](/zh/docs/reference/command-line-tools-reference/feature-gates/)。
* 确保根文件系统(或者可选的运行时文件系统)启用了项目配额。所有 XFS
文件系统都支持项目配额。
对 extf 文件系统而言,你需要在文件系统尚未被挂载时启用项目配额跟踪特性:
```bash
# 对 ext4 而言,在 /dev/block-device 尚未被挂载时执行下面操作
sudo tune2fs -O project -Q prjquota /dev/block-device
```
* 确保根文件系统(或者可选的运行时文件系统)在挂载时项目配额特性是被启用了的。
对于 XFS 和 ext4fs 而言,对应的挂载选项称作 `prjquota`
{{% /tab %}}
{{< /tabs >}}
<!--
## Extended resources
Extended resources are fully-qualified resource names outside the
`kubernetes.io` domain. They allow cluster operators to advertise and users to
consume the non-Kubernetes-built-in resources.
There are two steps required to use Extended Resources. First, the cluster
operator must advertise an Extended Resource. Second, users must request the
Extended Resource in Pods.
-->
## 扩展资源Extended Resources {#extended-resources}
扩展资源是 `kubernetes.io` 域名之外的标准资源名称。
它们使得集群管理员能够颁布非 Kubernetes 内置资源,而用户可以使用他们。
使用扩展资源需要两个步骤。首先,集群管理员必须颁布扩展资源。
其次,用户必须在 Pod 中请求扩展资源。
<!--
### Managing extended resources
#### Node-level extended resources
Node-level extended resources are tied to nodes.
##### Device plugin managed resources
See [Device
Plugin](/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/)
for how to advertise device plugin managed resources on each node.
-->
### 管理扩展资源
#### 节点级扩展资源
节点级扩展资源绑定到节点。
##### 设备插件管理的资源
有关如何颁布在各节点上由设备插件所管理的资源,请参阅
[设备插件](/zh/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/)。
<!--
##### Other resources
To advertise a new node-level extended resource, the cluster operator can
submit a `PATCH` HTTP request to the API server to specify the available
quantity in the `status.capacity` for a node in the cluster. After this
operation, the node's `status.capacity` will include a new resource. The
`status.allocatable` field is updated automatically with the new resource
asynchronously by the kubelet. Note that because the scheduler uses the node
`status.allocatable` value when evaluating Pod fitness, there may be a short
delay between patching the node capacity with a new resource and the first Pod
that requests the resource to be scheduled on that node.
-->
##### 其他资源
为了颁布新的节点级扩展资源,集群操作员可以向 API 服务器提交 `PATCH` HTTP 请求,
以在集群中节点的 `status.capacity` 中为其配置可用数量。
完成此操作后,节点的 `status.capacity` 字段中将包含新资源。
kubelet 会异步地对 `status.allocatable` 字段执行自动更新操作,使之包含新资源。
请注意,由于调度器在评估 Pod 是否适合在某节点上执行时会使用节点的 `status.allocatable` 值,
在更新节点容量使之包含新资源之后和请求该资源的第一个 Pod 被调度到该节点之间,
可能会有短暂的延迟。
<!--
**Example:**
Here is an example showing how to use `curl` to form an HTTP request that
advertises five "example.com/foo" resources on node `k8s-node-1` whose master
is `k8s-master`.
-->
**示例:**
这是一个示例,显示了如何使用 `curl` 构造 HTTP 请求,公告主节点为 `k8s-master`
的节点 `k8s-node-1` 上存在五个 `example.com/foo` 资源。
```shell
curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]' \
http://k8s-master:8080/api/v1/nodes/k8s-node-1/status
```
<!--
{{< note >}}
In the preceding request, `~1` is the encoding for the character `/`
in the patch path. The operation path value in JSON-Patch is interpreted as a
JSON-Pointer. For more details, see
{{< /note >}}
-->
{{< note >}}
在前面的请求中,`~1` 是在 patch 路径中对字符 `/` 的编码。
JSON-Patch 中的操作路径的值被视为 JSON-Pointer 类型。
有关更多详细信息,请参见
[IETF RFC 6901 第 3 节](https://tools.ietf.org/html/rfc6901#section-3)。
{{< /note >}}
<!--
#### Cluster-level extended resources
Cluster-level extended resources are not tied to nodes. They are usually managed
by scheduler extenders, which handle the resource consumption and resource quota.
You can specify the extended resources that are handled by scheduler extenders
in [scheduler policy
configuration](https://github.com/kubernetes/kubernetes/blob/release-1.10/pkg/scheduler/api/v1/types.go#L31).
-->
#### 集群层面的扩展资源
集群层面的扩展资源并不绑定到具体节点。
它们通常由调度器扩展程序Scheduler Extenders管理这些程序处理资源消耗和资源配额。
您可以在[调度器策略配置](https://github.com/kubernetes/kubernetes/blob/release-1.10/pkg/scheduler/api/v1/types.go#L31)中指定由调度器扩展程序处理的扩展资源。
<!--
**Example:**
The following configuration for a scheduler policy indicates that the
cluster-level extended resource "example.com/foo" is handled by the scheduler
extender.
- The scheduler sends a Pod to the scheduler extender only if the Pod requests
"example.com/foo".
- The `ignoredByScheduler` field specifies that the scheduler does not check
the "example.com/foo" resource in its `PodFitsResources` predicate.
-->
**示例:**
下面的调度器策略配置标明集群层扩展资源 "example.com/foo" 由调度器扩展程序处理。
- 仅当 Pod 请求 "example.com/foo" 时,调度器才会将 Pod 发送到调度器扩展程序。
- `ignoredByScheduler` 字段指定调度器不要在其 `PodFitsResources` 断言中检查
"example.com/foo" 资源。
```json
{
"kind": "Policy",
"apiVersion": "v1",
"extenders": [
{
"urlPrefix":"<extender-endpoint>",
"bindVerb": "bind",
"managedResources": [
{
"name": "example.com/foo",
"ignoredByScheduler": true
}
]
}
]
}
```
<!--
### Consuming extended resources
Users can consume extended resources in Pod specs just like CPU and memory.
The scheduler takes care of the resource accounting so that no more than the
available amount is simultaneously allocated to Pods.
The API server restricts quantities of extended resources to whole numbers.
Examples of _valid_ quantities are `3`, `3000m` and `3Ki`. Examples of
_invalid_ quantities are `0.5` and `1500m`.
-->
### 使用扩展资源
就像 CPU 和内存一样,用户可以在 Pod 的规约中使用扩展资源。
调度器负责资源的核算,确保同时分配给 Pod 的资源总量不会超过可用数量。
<!--
{{< note >}}
Extended resources replace Opaque Integer Resources.
Users can use any domain name prefix other than `kubernetes.io` which is reserved.
{{< /note >}}
-->
{{< note >}}
扩展资源取代了非透明整数资源Opaque Integer ResourcesOIR
用户可以使用 `kubernetes.io` (保留)以外的任何域名前缀。
{{< /note >}}
<!--
To consume an extended resource in a Pod, include the resource name as a key
in the `spec.containers[].resources.limits` map in the container spec.
{{< note >}}
Extended resources cannot be overcommitted, so request and limit
must be equal if both are present in a container spec.
{{< /note >}}
-->
要在 Pod 中使用扩展资源,请在容器规范的 `spec.containers[].resources.limits`
映射中包含资源名称作为键。
{{< note >}}
扩展资源不能过量使用,因此如果容器规范中同时存在请求和约束,则它们的取值必须相同。
{{< /note >}}
<!--
A Pod is scheduled only if all of the resource requests are satisfied, including
CPU, memory and any extended resources. The Pod remains in the `PENDING` state
as long as the resource request cannot be satisfied.
**Example:**
The Pod below requests 2 CPUs and 1 "example.com/foo" (an extended resource).
-->
仅当所有资源请求(包括 CPU、内存和任何扩展资源都被满足时Pod 才能被调度。
在资源请求无法满足时Pod 会保持在 `PENDING` 状态。
**示例:**
下面的 Pod 请求 2 个 CPU 和 1 个 "example.com/foo"(扩展资源)。
```yaml
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-container
image: myimage
resources:
requests:
cpu: 2
example.com/foo: 1
limits:
example.com/foo: 1
```
<!--
## Troubleshooting
### My Pods are pending with event message failedScheduling
If the scheduler cannot find any node where a Pod can fit, the Pod remains
unscheduled until a place can be found. An event is produced each time the
scheduler fails to find a place for the Pod, like this:
-->
## 疑难解答
### 我的 Pod 处于悬决状态且事件信息显示 failedScheduling
如果调度器找不到该 Pod 可以匹配的任何节点,则该 Pod 将保持未被调度状态,
直到找到一个可以被调度到的位置。每当调度器找不到 Pod 可以调度的地方时,
会产生一个事件,如下所示:
```shell
kubectl describe pod frontend | grep -A 3 Events
```
```
Events:
FirstSeen LastSeen Count From Subobject PathReason Message
36s 5s 6 {scheduler} FailedScheduling Failed for reason PodExceedsFreeCPU and possibly others
```
<!--
In the preceding example, the Pod named "frontend" fails to be scheduled due to
insufficient CPU resource on the node. Similar error messages can also suggest
failure due to insufficient memory (PodExceedsFreeMemory). In general, if a Pod
is pending with a message of this type, there are several things to try:
- Add more nodes to the cluster.
- Terminate unneeded Pods to make room for pending Pods.
- Check that the Pod is not larger than all the nodes. For example, if all the
nodes have a capacity of `cpu: 1`, then a Pod with a request of `cpu: 1.1` will
never be scheduled.
You can check node capacities and amounts allocated with the
`kubectl describe nodes` command. For example:
-->
在上述示例中,由于节点上的 CPU 资源不足,名为 “frontend” 的 Pod 无法被调度。
由于内存不足PodExceedsFreeMemory而导致失败时也有类似的错误消息。
一般来说,如果 Pod 处于悬决状态且有这种类型的消息时,你可以尝试如下几件事情:
- 向集群添加更多节点。
- 终止不需要的 Pod为悬决的 Pod 腾出空间。
- 检查 Pod 所需的资源是否超出所有节点的资源容量。例如,如果所有节点的容量都是`cpu1`
那么一个请求为 `cpu: 1.1` 的 Pod 永远不会被调度。
您可以使用 `kubectl describe nodes` 命令检查节点容量和已分配的资源数量。 例如:
```shell
kubectl describe nodes e2e-test-node-pool-4lw4
```
```
Name: e2e-test-node-pool-4lw4
[ ... 这里忽略了若干行以便阅读 ...]
Capacity:
cpu: 2
memory: 7679792Ki
pods: 110
Allocatable:
cpu: 1800m
memory: 7474992Ki
pods: 110
[ ... 这里忽略了若干行以便阅读 ...]
Non-terminated Pods: (5 in total)
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits
--------- ---- ------------ ---------- --------------- -------------
kube-system fluentd-gcp-v1.38-28bv1 100m (5%) 0 (0%) 200Mi (2%) 200Mi (2%)
kube-system kube-dns-3297075139-61lj3 260m (13%) 0 (0%) 100Mi (1%) 170Mi (2%)
kube-system kube-proxy-e2e-test-... 100m (5%) 0 (0%) 0 (0%) 0 (0%)
kube-system monitoring-influxdb-grafana-v4-z1m12 200m (10%) 200m (10%) 600Mi (8%) 600Mi (8%)
kube-system node-problem-detector-v0.1-fj7m3 20m (1%) 200m (10%) 20Mi (0%) 100Mi (1%)
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
CPU Requests CPU Limits Memory Requests Memory Limits
------------ ---------- --------------- -------------
680m (34%) 400m (20%) 920Mi (12%) 1070Mi (14%)
```
<!--
In the preceding output, you can see that if a Pod requests more than 1120m
CPUs or 6.23Gi of memory, it will not fit on the node.
By looking at the `Pods` section, you can see which Pods are taking up space on
the node.
The amount of resources available to Pods is less than the node capacity, because
system daemons use a portion of the available resources. The `allocatable` field
[NodeStatus](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#nodestatus-v1-core)
gives the amount of resources that are available to Pods. For more information, see
[Node Allocatable Resources](https://git.k8s.io/community/contributors/design-proposals/node/node-allocatable.md).
The [resource quota](/docs/concepts/policy/resource-quotas/) feature can be configured
to limit the total amount of resources that can be consumed. If used in conjunction
with namespaces, it can prevent one team from hogging all the resources.
-->
在上面的输出中,你可以看到如果 Pod 请求超过 1120m CPU 或者 6.23Gi 内存,节点将无法满足。
通过查看 `Pods` 部分,您将看到哪些 Pod 占用了节点上的资源。
可供 Pod 使用的资源量小于节点容量,因为系统守护程序也会使用一部分可用资源。
[NodeStatus](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#nodestatus-v1-core)
`allocatable` 字段给出了可用于 Pod 的资源量。
有关更多信息,请参阅 [节点可分配资源](https://git.k8s.io/community/contributors/design-proposals/node-allocatable.md)。
可以配置 [资源配额](/zh/docs/concepts/policy/resource-quotas/) 功能特性以限制可以使用的资源总量。
如果与名字空间配合一起使用,就可以防止一个团队占用所有资源。
<!--
### My Container is terminated
Your Container might get terminated because it is resource-starved. To check
whether a Container is being killed because it is hitting a resource limit, call
`kubectl describe pod` on the Pod of interest:
-->
### 我的容器被终止了
你的容器可能因为资源紧张而被终止。要查看容器是否因为遇到资源限制而被杀死,
请针对相关的 Pod 执行 `kubectl describe pod`
```shell
kubectl describe pod simmemleak-hra99
```
```
Name: simmemleak-hra99
Namespace: default
Image(s): saadali/simmemleak
Node: kubernetes-node-tf0f/10.240.216.66
Labels: name=simmemleak
Status: Running
Reason:
Message:
IP: 10.244.2.75
Replication Controllers: simmemleak (1/1 replicas created)
Containers:
simmemleak:
Image: saadali/simmemleak
Limits:
cpu: 100m
memory: 50Mi
State: Running
Started: Tue, 07 Jul 2015 12:54:41 -0700
Last Termination State: Terminated
Exit Code: 1
Started: Fri, 07 Jul 2015 12:54:30 -0700
Finished: Fri, 07 Jul 2015 12:54:33 -0700
Ready: False
Restart Count: 5
Conditions:
Type Status
Ready False
Events:
FirstSeen LastSeen Count From SubobjectPath Reason Message
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {scheduler } scheduled Successfully assigned simmemleak-hra99 to kubernetes-node-tf0f
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD pulled Pod container image "k8s.gcr.io/pause:0.8.0" already present on machine
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD created Created with docker id 6a41280f516d
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD started Started with docker id 6a41280f516d
Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} spec.containers{simmemleak} created Created with docker id 87348f12526a
```
<!--
In the preceding example, the `Restart Count: 5` indicates that the `simmemleak`
Container in the Pod was terminated and restarted five times.
You can call `kubectl get pod` with the `-o go-template=...` option to fetch the status
of previously terminated Containers:
-->
在上面的例子中,`Restart Count: 5` 意味着 Pod 中的 `simmemleak` 容器被终止并重启了五次。
你可以使用 `kubectl get pod` 命令加上 `-o go-template=...` 选项来获取之前终止容器的状态。
```shell
kubectl get pod -o go-template='{{range.status.containerStatuses}}{{"Container Name: "}}{{.name}}{{"\r\nLastState: "}}{{.lastState}}{{end}}' simmemleak-hra99
```
```
Container Name: simmemleak
LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]
```
<!--
You can see that the Container was terminated because of `reason:OOM Killed`, where `OOM` stands for Out Of Memory.
-->
你可以看到容器因为 `reason:OOM killed` 而被终止,`OOM` 表示内存不足Out Of Memory
## {{% heading "whatsnext" %}}
<!--
* Get hands-on experience [assigning Memory resources to Containers and Pods](/docs/tasks/configure-pod-container/assign-memory-resource/).
* Get hands-on experience [assigning CPU resources to Containers and Pods](/docs/tasks/configure-pod-container/assign-cpu-resource/).
* For more details about the difference between requests and limits, see
[Resource QoS](https://git.k8s.io/community/contributors/design-proposals/node/resource-qos.md).
* Read the [Container](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#container-v1-core) API reference
* Read the [ResourceRequirements](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#resourcerequirements-v1-core) API reference
* Read about [project quotas](http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/xfs-quotas.html) in XFS
-->
* 获取将 [分配内存资源给容器和 Pod ](/zh/docs/tasks/configure-pod-container/assign-memory-resource/) 的实践经验
* 获取将 [分配 CPU 资源给容器和 Pod ](/zh/docs/tasks/configure-pod-container/assign-cpu-resource/) 的实践经验
* 关于请求和约束之间的区别,细节信息可参见[资源服务质量](https://git.k8s.io/community/contributors/design-proposals/node/resource-qos.md)
* 阅读 API 参考文档中 [Container](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#container-v1-core) 部分。
* 阅读 API 参考文档中 [ResourceRequirements](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#resourcerequirements-v1-core) 部分。
* 阅读 XFS 中关于 [项目配额](https://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/xfs-quotas.html) 的文档。