210 lines
9.5 KiB
Markdown
210 lines
9.5 KiB
Markdown
---
|
||
layout: blog
|
||
title: "Kubernetes 1.27:HorizontalPodAutoscaler ContainerResource 类型指标进阶至 Beta"
|
||
date: 2023-05-02T12:00:00+0800
|
||
slug: hpa-container-resource-metric
|
||
---
|
||
<!--
|
||
layout: blog
|
||
title: "Kubernetes 1.27: HorizontalPodAutoscaler ContainerResource type metric moves to beta"
|
||
date: 2023-05-02T12:00:00+0800
|
||
slug: hpa-container-resource-metric
|
||
-->
|
||
|
||
<!--
|
||
**Author:** [Kensei Nakada](https://github.com/sanposhiho) (Mercari)
|
||
-->
|
||
**作者:** [Kensei Nakada](https://github.com/sanposhiho) (Mercari)
|
||
|
||
**译者:** [Michael Yao](https://github.com/windsonsea) (DaoCloud)
|
||
|
||
<!--
|
||
Kubernetes 1.20 introduced the [`ContainerResource` type metric](/docs/tasks/run-application/horizontal-pod-autoscale/#container-resource-metrics)
|
||
in HorizontalPodAutoscaler (HPA).
|
||
|
||
In Kubernetes 1.27, this feature moves to beta and the corresponding feature gate (`HPAContainerMetrics`) gets enabled by default.
|
||
-->
|
||
Kubernetes 1.20 在 HorizontalPodAutoscaler (HPA) 中引入了
|
||
[`ContainerResource` 类型指标](/zh-cn/docs/tasks/run-application/horizontal-pod-autoscale/#container-resource-metrics)。
|
||
|
||
在 Kubernetes 1.27 中,此特性进阶至 Beta,相应的特性门控 (`HPAContainerMetrics`) 默认被启用。
|
||
|
||
<!--
|
||
## What is the ContainerResource type metric
|
||
|
||
The ContainerResource type metric allows us to configure the autoscaling based on resource usage of individual containers.
|
||
|
||
In the following example, the HPA controller scales the target
|
||
so that the average utilization of the cpu in the application container of all the pods is around 60%.
|
||
(See [the algorithm details](/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details)
|
||
to know how the desired replica number is calculated exactly)
|
||
-->
|
||
## 什么是 ContainerResource 类型指标
|
||
|
||
ContainerResource 类型指标允许我们根据各个容器的资源使用量来配置自动扩缩。
|
||
|
||
在下面的示例中,HPA 控制器扩缩目标,以便所有 Pod 的应用程序容器的 CPU 平均利用率约为 60%
|
||
(请参见[算法详情](/zh-cn/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details)以了解预期副本数的确切计算方式)。
|
||
|
||
```yaml
|
||
type: ContainerResource
|
||
containerResource:
|
||
name: cpu
|
||
container: application
|
||
target:
|
||
type: Utilization
|
||
averageUtilization: 60
|
||
```
|
||
|
||
<!--
|
||
## The difference from the Resource type metric
|
||
|
||
HPA already had a [Resource type metric](/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-resource-metrics).
|
||
|
||
You can define the target resource utilization like the following,
|
||
and then HPA will scale up/down the replicas based on the current utilization.
|
||
-->
|
||
## 与 Resource 类型指标的区别
|
||
|
||
HPA 已具有 [Resource 类型指标](/zh-cn/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-resource-metrics)。
|
||
|
||
你可以定义如下的目标资源利用率,然后 HPA 将基于当前利用率扩缩副本。
|
||
|
||
```yaml
|
||
type: Resource
|
||
resource:
|
||
name: cpu
|
||
target:
|
||
type: Utilization
|
||
averageUtilization: 60
|
||
```
|
||
|
||
<!--
|
||
But, this Resource type metric refers to the average utilization of the **Pods**.
|
||
|
||
In case a Pod has multiple containers, the utilization calculation would be:
|
||
-->
|
||
但这个 Resource 类型指标指的是 **Pod** 的平均利用率。
|
||
|
||
如果一个 Pod 有多个容器,则利用率计算公式为:
|
||
|
||
<!--
|
||
```
|
||
sum{the resource usage of each container} / sum{the resource request of each container}
|
||
```
|
||
-->
|
||
```
|
||
sum{每个容器的资源使用量} / sum{每个容器的资源请求}
|
||
```
|
||
|
||
<!--
|
||
The resource utilization of each container may not have a direct correlation or may grow at different rates as the load changes.
|
||
-->
|
||
每个容器的资源利用率可能没有直接关系,或可能随着负载变化而以不同的速度增长。
|
||
|
||
<!--
|
||
For example:
|
||
- A sidecar container is only providing an auxiliary service such as log shipping.
|
||
If the application does not log very frequently or does not produce logs in its hotpath
|
||
then the usage of the log shipper will not grow.
|
||
- A sidecar container which provides authentication. Due to heavy caching
|
||
the usage will only increase slightly when the load on the main container increases.
|
||
In the current blended usage calculation approach this usually results in
|
||
the HPA not scaling up the deployment because the blended usage is still low.
|
||
- A sidecar may be injected without resources set which prevents scaling
|
||
based on utilization. In the current logic the HPA controller can only scale
|
||
on absolute resource usage of the pod when the resource requests are not set.
|
||
-->
|
||
例如:
|
||
|
||
- 边车容器仅提供日志传输这类辅助服务。
|
||
如果应用程序不经常记录日志或在其频繁执行的路径中不生成日志,则日志发送器的使用量不会增长。
|
||
- 提供身份验证的边车容器。由于重度缓存,当主要容器的负载增加时,使用量只会略微增加。
|
||
在当前的混合用量计算方法中,这通常导致 HPA 不会对 Deployment 向上扩容,因为混合的使用量仍然很低。
|
||
- 边车可能在未设置资源的情况下被注入,这会阻止基于利用率进行扩缩。
|
||
在当前的逻辑中,当未设置资源请求时,HPA 控制器只能根据 Pod 的绝对资源使用量进行扩缩。
|
||
|
||
<!--
|
||
And, in such case, if only one container's resource utilization goes high,
|
||
the Resource type metric may not suggest scaling up.
|
||
|
||
So, for the accurate autoscaling, you may want to use the ContainerResource type metric for such Pods instead.
|
||
-->
|
||
在这种情况下,如果仅有一个容器的资源利用率增加,则 Resource 类型指标可能不会建议扩容。
|
||
|
||
因此,为了实现准确的自动扩缩,你可能需要改为使用 ContainerResource 类型指标来替代这些 Pod。
|
||
|
||
<!--
|
||
## What's new for the beta?
|
||
|
||
For Kubernetes v1.27, the ContainerResource type metric is available by default as described at the beginning
|
||
of this article.
|
||
(You can still disable it by the `HPAContainerMetrics` feature gate.)
|
||
-->
|
||
## Beta 版本有哪些新内容?
|
||
|
||
在 Kubernetes v1.27 中,正如本文开头所述,ContainerResource 类型指标默认可用。
|
||
(你仍然可以通过 `HPAContainerMetrics` 特性门禁用它。)
|
||
|
||
<!--
|
||
Also, we've improved the observability of HPA controller by exposing some metrics from the kube-controller-manager:
|
||
- `metric_computation_total`: Number of metric computations.
|
||
- `metric_computation_duration_seconds`: The time that the HPA controller takes to calculate one metric.
|
||
- `reconciliations_total`: Number of reconciliation of HPA controller.
|
||
- `reconciliation_duration_seconds`: The time that the HPA controller takes to reconcile a HPA object once.
|
||
-->
|
||
另外,我们已通过从 kube-controller-manager 中公开一些指标来改进 HPA 控制器的可观测性:
|
||
|
||
- `metric_computation_total`:指标计算的数量。
|
||
- `metric_computation_duration_seconds`:HPA 控制器计算一个指标所需的时间。
|
||
- `reconciliations_total`:HPA 控制器的协调次数。
|
||
- `reconciliation_duration_seconds`:HPA 控制器协调一次 HPA 对象所需的时间。
|
||
|
||
<!--
|
||
These metrics have labels `action` (`scale_up`, `scale_down`, `none`) and `error` (`spec`, `internal`, `none`).
|
||
And, in addition to them, the first two metrics have the `metric_type` label
|
||
which corresponds to `.spec.metrics[*].type` for a HorizontalPodAutoscaler.
|
||
-->
|
||
这些指标具有 `action`(`scale_up`、`scale_down`、`none`)和
|
||
`error`(`spec`、`internal`、`none`)标签。
|
||
除此之外,前两个指标还具有 `metric_type` 标签,该标签对应于
|
||
HorizontalPodAutoscaler 的 `.spec.metrics[*].type`。
|
||
|
||
<!--
|
||
All metrics are useful for general monitoring of HPA controller,
|
||
you can get deeper insight into which part has a problem, where it takes time, how much scaling tends to happen at which time on your cluster etc.
|
||
-->
|
||
所有指标都可用于 HPA 控制器的常规监控,你可以深入洞察哪部分存在问题,在哪里耗时,
|
||
集群在哪个时间倾向于发生多少次扩缩等问题。
|
||
|
||
<!--
|
||
Another minor stuff, we've changed the `SuccessfulRescale` event's messages
|
||
so that everyone can check whether the events came from the resource metric or
|
||
the container resource metric (See [the related PR](https://github.com/kubernetes/kubernetes/pull/116045)).
|
||
-->
|
||
另一件小事是,我们已更改了 `SuccessfulRescale` 事件的消息,
|
||
这样每个人都可以检查事件是否来自资源指标或容器资源指标
|
||
(请参见[相关 PR](https://github.com/kubernetes/kubernetes/pull/116045))。
|
||
|
||
<!--
|
||
## Getting involved
|
||
|
||
This feature is managed by [SIG Autoscaling](https://github.com/kubernetes/community/tree/master/sig-autoscaling).
|
||
Please join us and share your feedback. We look forward to hearing from you!
|
||
-->
|
||
## 参与其中
|
||
|
||
此特性由 [SIG Autoscaling](https://github.com/kubernetes/community/tree/master/sig-autoscaling)
|
||
进行管理。请加入我们分享反馈。我们期待聆听你的声音!
|
||
|
||
<!--
|
||
## How can I learn more?
|
||
|
||
- [The official document of the ContainerResource type metric](/docs/tasks/run-application/horizontal-pod-autoscale/#container-resource-metrics)
|
||
- [KEP-1610: Container Resource based Autoscaling](https://github.com/kubernetes/enhancements/tree/master/keps/sig-autoscaling/1610-container-resource-autoscaling)
|
||
-->
|
||
## 了解更多
|
||
|
||
- [ContainerResource 类型指标的正式文档](/zh-cn/docs/tasks/run-application/horizontal-pod-autoscale/#container-resource-metrics)
|
||
- [KEP-1610:Container Resource based Autoscaling(基于容器资源的自动扩缩)](https://github.com/kubernetes/enhancements/tree/master/keps/sig-autoscaling/1610-container-resource-autoscaling)
|