mirror of https://github.com/coqui-ai/TTS.git
137 lines
5.0 KiB
Python
137 lines
5.0 KiB
Python
import os
|
|
import librosa
|
|
import pickle
|
|
import copy
|
|
import numpy as np
|
|
import scipy
|
|
from scipy import signal
|
|
|
|
_mel_basis = None
|
|
|
|
|
|
class AudioProcessor(object):
|
|
def __init__(self,
|
|
sample_rate,
|
|
num_mels,
|
|
min_level_db,
|
|
frame_shift_ms,
|
|
frame_length_ms,
|
|
ref_level_db,
|
|
num_freq,
|
|
power,
|
|
preemphasis,
|
|
griffin_lim_iters=None):
|
|
|
|
print(" > Setting up Audio Processor...")
|
|
self.sample_rate = sample_rate
|
|
self.num_mels = num_mels
|
|
self.min_level_db = min_level_db
|
|
self.frame_shift_ms = frame_shift_ms
|
|
self.frame_length_ms = frame_length_ms
|
|
self.ref_level_db = ref_level_db
|
|
self.num_freq = num_freq
|
|
self.power = power
|
|
self.preemphasis = preemphasis
|
|
self.griffin_lim_iters = griffin_lim_iters
|
|
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
|
|
if preemphasis == 0:
|
|
print(" | > Preemphasis is deactive.")
|
|
|
|
def save_wav(self, wav, path):
|
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
|
# librosa.output.write_wav(path, wav_norm.astype(np.int16), self.sample_rate)
|
|
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
|
|
|
|
def _linear_to_mel(self, spectrogram):
|
|
global _mel_basis
|
|
if _mel_basis is None:
|
|
_mel_basis = self._build_mel_basis()
|
|
return np.dot(_mel_basis, spectrogram)
|
|
|
|
def _build_mel_basis(self, ):
|
|
n_fft = (self.num_freq - 1) * 2
|
|
return librosa.filters.mel(
|
|
self.sample_rate, n_fft, n_mels=self.num_mels)
|
|
|
|
def _normalize(self, S):
|
|
return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1)
|
|
|
|
def _denormalize(self, S):
|
|
return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db
|
|
|
|
def _stft_parameters(self, ):
|
|
n_fft = (self.num_freq - 1) * 2
|
|
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
|
|
win_length = int(self.frame_length_ms / 1000.0 * self.sample_rate)
|
|
print(" | > fft size: {}, hop length: {}, win length: {}".format(
|
|
n_fft, hop_length, win_length))
|
|
return n_fft, hop_length, win_length
|
|
|
|
def _amp_to_db(self, x):
|
|
min_level = np.exp(self.min_level_db / 20 * np.log(10))
|
|
return 20 * np.log10(np.maximum(min_level, x))
|
|
|
|
def _db_to_amp(self, x):
|
|
return np.power(10.0, x * 0.05)
|
|
|
|
def apply_preemphasis(self, x):
|
|
if self.preemphasis == 0:
|
|
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
|
|
return signal.lfilter([1, -self.preemphasis], [1], x)
|
|
|
|
def apply_inv_preemphasis(self, x):
|
|
if self.preemphasis == 0:
|
|
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
|
|
return signal.lfilter([1], [1, -self.preemphasis], x)
|
|
|
|
def spectrogram(self, y):
|
|
if self.preemphasis != 0:
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
else:
|
|
D = self._stft(y)
|
|
S = self._amp_to_db(np.abs(D)) - self.ref_level_db
|
|
return self._normalize(S)
|
|
|
|
def inv_spectrogram(self, spectrogram):
|
|
'''Converts spectrogram to waveform using librosa'''
|
|
S = self._denormalize(spectrogram)
|
|
S = self._db_to_amp(S + self.ref_level_db) # Convert back to linear
|
|
# Reconstruct phase
|
|
if self.preemphasis != 0:
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
|
|
else:
|
|
return self._griffin_lim(S**self.power)
|
|
|
|
def _griffin_lim(self, S):
|
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
|
S_complex = np.abs(S).astype(np.complex)
|
|
y = self._istft(S_complex * angles)
|
|
for i in range(self.griffin_lim_iters):
|
|
angles = np.exp(1j * np.angle(self._stft(y)))
|
|
y = self._istft(S_complex * angles)
|
|
return y
|
|
|
|
def melspectrogram(self, y):
|
|
if self.preemphasis != 0:
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
else:
|
|
D = self._stft(y)
|
|
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
|
|
return self._normalize(S)
|
|
|
|
def _stft(self, y):
|
|
return librosa.stft(
|
|
y=y, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length)
|
|
|
|
def _istft(self, y):
|
|
return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length)
|
|
|
|
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
|
|
window_length = int(self.sample_rate * min_silence_sec)
|
|
hop_length = int(window_length / 4)
|
|
threshold = self._db_to_amp(threshold_db)
|
|
for x in range(hop_length, len(wav) - window_length, hop_length):
|
|
if np.max(wav[x:x + window_length]) < threshold:
|
|
return x + hop_length
|
|
return len(wav)
|