TTS/utils/audio.py

137 lines
5.0 KiB
Python
Raw Normal View History

2018-07-13 12:50:55 +00:00
import os
import librosa
import pickle
import copy
import numpy as np
import scipy
2018-07-13 12:50:55 +00:00
from scipy import signal
_mel_basis = None
class AudioProcessor(object):
2018-08-02 14:34:17 +00:00
def __init__(self,
sample_rate,
num_mels,
min_level_db,
frame_shift_ms,
frame_length_ms,
ref_level_db,
num_freq,
power,
preemphasis,
griffin_lim_iters=None):
print(" > Setting up Audio Processor...")
2018-07-13 12:50:55 +00:00
self.sample_rate = sample_rate
self.num_mels = num_mels
self.min_level_db = min_level_db
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.ref_level_db = ref_level_db
self.num_freq = num_freq
self.power = power
self.preemphasis = preemphasis
2018-07-13 12:50:55 +00:00
self.griffin_lim_iters = griffin_lim_iters
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
if preemphasis == 0:
print(" | > Preemphasis is deactive.")
2018-07-13 12:50:55 +00:00
def save_wav(self, wav, path):
2018-09-19 13:45:08 +00:00
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
# librosa.output.write_wav(path, wav_norm.astype(np.int16), self.sample_rate)
2018-09-21 19:51:38 +00:00
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
2018-07-13 12:50:55 +00:00
def _linear_to_mel(self, spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = self._build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis(self, ):
n_fft = (self.num_freq - 1) * 2
2018-08-02 14:34:17 +00:00
return librosa.filters.mel(
self.sample_rate, n_fft, n_mels=self.num_mels)
2018-07-13 12:50:55 +00:00
def _normalize(self, S):
return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1)
def _denormalize(self, S):
return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db
def _stft_parameters(self, ):
n_fft = (self.num_freq - 1) * 2
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
win_length = int(self.frame_length_ms / 1000.0 * self.sample_rate)
print(" | > fft size: {}, hop length: {}, win length: {}".format(
n_fft, hop_length, win_length))
2018-07-13 12:50:55 +00:00
return n_fft, hop_length, win_length
def _amp_to_db(self, x):
2018-07-19 15:17:10 +00:00
min_level = np.exp(self.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
2018-07-13 12:50:55 +00:00
def _db_to_amp(self, x):
return np.power(10.0, x * 0.05)
def apply_preemphasis(self, x):
if self.preemphasis == 0:
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
return signal.lfilter([1, -self.preemphasis], [1], x)
2018-08-02 14:34:17 +00:00
def apply_inv_preemphasis(self, x):
if self.preemphasis == 0:
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
return signal.lfilter([1], [1, -self.preemphasis], x)
2018-07-13 12:50:55 +00:00
def spectrogram(self, y):
if self.preemphasis != 0:
D = self._stft(self.apply_preemphasis(y))
else:
D = self._stft(y)
2018-07-13 12:50:55 +00:00
S = self._amp_to_db(np.abs(D)) - self.ref_level_db
return self._normalize(S)
def inv_spectrogram(self, spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = self._denormalize(spectrogram)
S = self._db_to_amp(S + self.ref_level_db) # Convert back to linear
# Reconstruct phase
if self.preemphasis != 0:
2018-08-02 14:34:17 +00:00
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
else:
2018-08-02 14:34:17 +00:00
return self._griffin_lim(S**self.power)
2018-07-13 12:50:55 +00:00
def _griffin_lim(self, S):
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = self._istft(S_complex * angles)
2018-07-13 12:50:55 +00:00
for i in range(self.griffin_lim_iters):
angles = np.exp(1j * np.angle(self._stft(y)))
y = self._istft(S_complex * angles)
2018-07-13 12:50:55 +00:00
return y
def melspectrogram(self, y):
if self.preemphasis != 0:
D = self._stft(self.apply_preemphasis(y))
else:
D = self._stft(y)
2018-07-13 12:50:55 +00:00
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
return self._normalize(S)
def _stft(self, y):
2018-08-02 14:34:17 +00:00
return librosa.stft(
y=y, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length)
2018-07-13 12:50:55 +00:00
def _istft(self, y):
return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length)
2018-07-13 12:50:55 +00:00
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(self.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = self._db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)