mirror of https://github.com/coqui-ai/TTS.git
408 lines
17 KiB
Markdown
408 lines
17 KiB
Markdown
|
|
## 🐸Coqui.ai News
|
|
- 📣 ⓍTTSv2 is here with 16 languages and better performance across the board.
|
|
- 📣 ⓍTTS fine-tuning code is out. Check the [example recipes](https://github.com/coqui-ai/TTS/tree/dev/recipes/ljspeech).
|
|
- 📣 ⓍTTS can now stream with <200ms latency.
|
|
- 📣 ⓍTTS, our production TTS model that can speak 13 languages, is released [Blog Post](https://coqui.ai/blog/tts/open_xtts), [Demo](https://huggingface.co/spaces/coqui/xtts), [Docs](https://tts.readthedocs.io/en/dev/models/xtts.html)
|
|
- 📣 [🐶Bark](https://github.com/suno-ai/bark) is now available for inference with unconstrained voice cloning. [Docs](https://tts.readthedocs.io/en/dev/models/bark.html)
|
|
- 📣 You can use [~1100 Fairseq models](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS.
|
|
- 📣 🐸TTS now supports 🐢Tortoise with faster inference. [Docs](https://tts.readthedocs.io/en/dev/models/tortoise.html)
|
|
|
|
<div align="center">
|
|
<img src="https://static.scarf.sh/a.png?x-pxid=cf317fe7-2188-4721-bc01-124bb5d5dbb2" />
|
|
|
|
## <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/coqui-log-green-TTS.png" height="56"/>
|
|
|
|
|
|
**🐸TTS is a library for advanced Text-to-Speech generation.**
|
|
|
|
🚀 Pretrained models in +1100 languages.
|
|
|
|
🛠️ Tools for training new models and fine-tuning existing models in any language.
|
|
|
|
📚 Utilities for dataset analysis and curation.
|
|
______________________________________________________________________
|
|
|
|
[![Discord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv)
|
|
[![License](<https://img.shields.io/badge/License-MPL%202.0-brightgreen.svg>)](https://opensource.org/licenses/MPL-2.0)
|
|
[![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS)
|
|
[![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md)
|
|
[![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts)
|
|
[![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440)
|
|
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg)
|
|
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg)
|
|
[![Docs](<https://readthedocs.org/projects/tts/badge/?version=latest&style=plastic>)](https://tts.readthedocs.io/en/latest/)
|
|
|
|
</div>
|
|
|
|
______________________________________________________________________
|
|
|
|
## 💬 Where to ask questions
|
|
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.
|
|
|
|
| Type | Platforms |
|
|
| ------------------------------- | --------------------------------------- |
|
|
| 🚨 **Bug Reports** | [GitHub Issue Tracker] |
|
|
| 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] |
|
|
| 👩💻 **Usage Questions** | [GitHub Discussions] |
|
|
| 🗯 **General Discussion** | [GitHub Discussions] or [Discord] |
|
|
|
|
[github issue tracker]: https://github.com/coqui-ai/tts/issues
|
|
[github discussions]: https://github.com/coqui-ai/TTS/discussions
|
|
[discord]: https://discord.gg/5eXr5seRrv
|
|
[Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials
|
|
|
|
|
|
## 🔗 Links and Resources
|
|
| Type | Links |
|
|
| ------------------------------- | --------------------------------------- |
|
|
| 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/)
|
|
| 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#installation)|
|
|
| 👩💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)|
|
|
| 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378)
|
|
| 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)|
|
|
| 📰 **Papers** | [TTS Papers](https://github.com/erogol/TTS-papers)|
|
|
|
|
|
|
## 🥇 TTS Performance
|
|
<p align="center"><img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/TTS-performance.png" width="800" /></p>
|
|
|
|
Underlined "TTS*" and "Judy*" are **internal** 🐸TTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices.
|
|
|
|
## Features
|
|
- High-performance Deep Learning models for Text2Speech tasks.
|
|
- Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech).
|
|
- Speaker Encoder to compute speaker embeddings efficiently.
|
|
- Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN)
|
|
- Fast and efficient model training.
|
|
- Detailed training logs on the terminal and Tensorboard.
|
|
- Support for Multi-speaker TTS.
|
|
- Efficient, flexible, lightweight but feature complete `Trainer API`.
|
|
- Released and ready-to-use models.
|
|
- Tools to curate Text2Speech datasets under```dataset_analysis```.
|
|
- Utilities to use and test your models.
|
|
- Modular (but not too much) code base enabling easy implementation of new ideas.
|
|
|
|
## Model Implementations
|
|
### Spectrogram models
|
|
- Tacotron: [paper](https://arxiv.org/abs/1703.10135)
|
|
- Tacotron2: [paper](https://arxiv.org/abs/1712.05884)
|
|
- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129)
|
|
- Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802)
|
|
- Align-TTS: [paper](https://arxiv.org/abs/2003.01950)
|
|
- FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf)
|
|
- FastSpeech: [paper](https://arxiv.org/abs/1905.09263)
|
|
- FastSpeech2: [paper](https://arxiv.org/abs/2006.04558)
|
|
- SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557)
|
|
- Capacitron: [paper](https://arxiv.org/abs/1906.03402)
|
|
- OverFlow: [paper](https://arxiv.org/abs/2211.06892)
|
|
- Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320)
|
|
- Delightful TTS: [paper](https://arxiv.org/abs/2110.12612)
|
|
|
|
### End-to-End Models
|
|
- ⓍTTS: [blog](https://coqui.ai/blog/tts/open_xtts)
|
|
- VITS: [paper](https://arxiv.org/pdf/2106.06103)
|
|
- 🐸 YourTTS: [paper](https://arxiv.org/abs/2112.02418)
|
|
- 🐢 Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts)
|
|
- 🐶 Bark: [orig. repo](https://github.com/suno-ai/bark)
|
|
|
|
### Attention Methods
|
|
- Guided Attention: [paper](https://arxiv.org/abs/1710.08969)
|
|
- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006)
|
|
- Graves Attention: [paper](https://arxiv.org/abs/1910.10288)
|
|
- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/)
|
|
- Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf)
|
|
- Alignment Network: [paper](https://arxiv.org/abs/2108.10447)
|
|
|
|
### Speaker Encoder
|
|
- GE2E: [paper](https://arxiv.org/abs/1710.10467)
|
|
- Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf)
|
|
|
|
### Vocoders
|
|
- MelGAN: [paper](https://arxiv.org/abs/1910.06711)
|
|
- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106)
|
|
- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480)
|
|
- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646)
|
|
- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/)
|
|
- WaveGrad: [paper](https://arxiv.org/abs/2009.00713)
|
|
- HiFiGAN: [paper](https://arxiv.org/abs/2010.05646)
|
|
- UnivNet: [paper](https://arxiv.org/abs/2106.07889)
|
|
|
|
### Voice Conversion
|
|
- FreeVC: [paper](https://arxiv.org/abs/2210.15418)
|
|
|
|
You can also help us implement more models.
|
|
|
|
## Installation
|
|
🐸TTS is tested on Ubuntu 18.04 with **python >= 3.9, < 3.12.**.
|
|
|
|
If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option.
|
|
|
|
```bash
|
|
pip install TTS
|
|
```
|
|
|
|
If you plan to code or train models, clone 🐸TTS and install it locally.
|
|
|
|
```bash
|
|
git clone https://github.com/coqui-ai/TTS
|
|
pip install -e .[all,dev,notebooks] # Select the relevant extras
|
|
```
|
|
|
|
If you are on Ubuntu (Debian), you can also run following commands for installation.
|
|
|
|
```bash
|
|
$ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS.
|
|
$ make install
|
|
```
|
|
|
|
If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system).
|
|
|
|
|
|
## Docker Image
|
|
You can also try TTS without install with the docker image.
|
|
Simply run the following command and you will be able to run TTS without installing it.
|
|
|
|
```bash
|
|
docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu
|
|
python3 TTS/server/server.py --list_models #To get the list of available models
|
|
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server
|
|
```
|
|
|
|
You can then enjoy the TTS server [here](http://[::1]:5002/)
|
|
More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html)
|
|
|
|
|
|
## Synthesizing speech by 🐸TTS
|
|
|
|
### 🐍 Python API
|
|
|
|
#### Running a multi-speaker and multi-lingual model
|
|
|
|
```python
|
|
import torch
|
|
from TTS.api import TTS
|
|
|
|
# Get device
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
# List available 🐸TTS models
|
|
print(TTS().list_models())
|
|
|
|
# Init TTS
|
|
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
|
|
|
|
# Run TTS
|
|
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
|
# Text to speech list of amplitude values as output
|
|
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
|
# Text to speech to a file
|
|
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
|
```
|
|
|
|
#### Running a single speaker model
|
|
|
|
```python
|
|
# Init TTS with the target model name
|
|
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)
|
|
|
|
# Run TTS
|
|
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
|
|
|
|
# Example voice cloning with YourTTS in English, French and Portuguese
|
|
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device)
|
|
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
|
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
|
|
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")
|
|
```
|
|
|
|
#### Example voice conversion
|
|
|
|
Converting the voice in `source_wav` to the voice of `target_wav`
|
|
|
|
```python
|
|
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
|
|
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
|
|
```
|
|
|
|
#### Example voice cloning together with the voice conversion model.
|
|
This way, you can clone voices by using any model in 🐸TTS.
|
|
|
|
```python
|
|
|
|
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
|
|
tts.tts_with_vc_to_file(
|
|
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
|
speaker_wav="target/speaker.wav",
|
|
file_path="output.wav"
|
|
)
|
|
```
|
|
|
|
#### Example text to speech using **Fairseq models in ~1100 languages** 🤯.
|
|
For Fairseq models, use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`.
|
|
You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html)
|
|
and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).
|
|
|
|
```python
|
|
# TTS with on the fly voice conversion
|
|
api = TTS("tts_models/deu/fairseq/vits")
|
|
api.tts_with_vc_to_file(
|
|
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
|
speaker_wav="target/speaker.wav",
|
|
file_path="output.wav"
|
|
)
|
|
```
|
|
|
|
### Command-line `tts`
|
|
|
|
<!-- begin-tts-readme -->
|
|
|
|
Synthesize speech on command line.
|
|
|
|
You can either use your trained model or choose a model from the provided list.
|
|
|
|
If you don't specify any models, then it uses LJSpeech based English model.
|
|
|
|
#### Single Speaker Models
|
|
|
|
- List provided models:
|
|
|
|
```
|
|
$ tts --list_models
|
|
```
|
|
|
|
- Get model info (for both tts_models and vocoder_models):
|
|
|
|
- Query by type/name:
|
|
The model_info_by_name uses the name as it from the --list_models.
|
|
```
|
|
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
For example:
|
|
```
|
|
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
|
|
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
|
|
```
|
|
- Query by type/idx:
|
|
The model_query_idx uses the corresponding idx from --list_models.
|
|
|
|
```
|
|
$ tts --model_info_by_idx "<model_type>/<model_query_idx>"
|
|
```
|
|
|
|
For example:
|
|
|
|
```
|
|
$ tts --model_info_by_idx tts_models/3
|
|
```
|
|
|
|
- Query info for model info by full name:
|
|
```
|
|
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
|
|
- Run TTS with default models:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
|
```
|
|
|
|
- Run TTS and pipe out the generated TTS wav file data:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
|
```
|
|
|
|
- Run a TTS model with its default vocoder model:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
|
|
```
|
|
|
|
For example:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
|
|
```
|
|
|
|
- Run with specific TTS and vocoder models from the list:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
|
|
```
|
|
|
|
For example:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
|
|
```
|
|
|
|
- Run your own TTS model (Using Griffin-Lim Vocoder):
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
|
```
|
|
|
|
- Run your own TTS and Vocoder models:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
|
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
|
|
```
|
|
|
|
#### Multi-speaker Models
|
|
|
|
- List the available speakers and choose a <speaker_id> among them:
|
|
|
|
```
|
|
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
|
|
```
|
|
|
|
- Run the multi-speaker TTS model with the target speaker ID:
|
|
|
|
```
|
|
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
|
|
```
|
|
|
|
- Run your own multi-speaker TTS model:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
|
|
```
|
|
|
|
### Voice Conversion Models
|
|
|
|
```
|
|
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
|
|
```
|
|
|
|
<!-- end-tts-readme -->
|
|
|
|
## Directory Structure
|
|
```
|
|
|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
|
|
|- utils/ (common utilities.)
|
|
|- TTS
|
|
|- bin/ (folder for all the executables.)
|
|
|- train*.py (train your target model.)
|
|
|- ...
|
|
|- tts/ (text to speech models)
|
|
|- layers/ (model layer definitions)
|
|
|- models/ (model definitions)
|
|
|- utils/ (model specific utilities.)
|
|
|- speaker_encoder/ (Speaker Encoder models.)
|
|
|- (same)
|
|
|- vocoder/ (Vocoder models.)
|
|
|- (same)
|
|
```
|