mirror of https://github.com/coqui-ai/TTS.git
print average text length, fix for Nancy preprocessor
parent
b8ca19fd2c
commit
660f8c7b66
|
@ -55,6 +55,6 @@ def nancy(root_path, meta_file):
|
|||
id = line.split()[1]
|
||||
text = line[line.find('"')+1:line.rfind('"')-1]
|
||||
wav_file = root_path + 'wavn/' + id + '.wav'
|
||||
items.append(text, wav_file)
|
||||
items.append([text, wav_file])
|
||||
random.shuffle(items)
|
||||
return items
|
19
train.py
19
train.py
|
@ -51,6 +51,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_targets = data[5]
|
||||
avg_text_length = torch.mean(text_lengths.float())
|
||||
|
||||
# set stop targets view, we predict a single stop token per r frames prediction
|
||||
stop_targets = stop_targets.view(text_input.shape[0],
|
||||
|
@ -68,13 +69,13 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
|
||||
# dispatch data to GPU
|
||||
if use_cuda:
|
||||
text_input = text_input.cuda()
|
||||
text_lengths = text_lengths.cuda()
|
||||
mel_input = mel_input.cuda()
|
||||
mel_lengths = mel_lengths.cuda()
|
||||
linear_input = linear_input.cuda()
|
||||
stop_targets = stop_targets.cuda()
|
||||
|
||||
text_input = text_input.cuda(non_blocking=True)
|
||||
text_lengths = text_lengths.cuda(non_blocking=True)
|
||||
mel_input = mel_input.cuda(non_blocking=True)
|
||||
mel_lengths = mel_lengths.cuda(non_blocking=True)
|
||||
linear_input = linear_input.cuda(non_blocking=True)
|
||||
stop_targets = stop_targets.cuda(non_blocking=True)
|
||||
|
||||
# compute mask for padding
|
||||
mask = sequence_mask(text_lengths)
|
||||
|
||||
|
@ -129,10 +130,10 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
print(
|
||||
" | > Step:{}/{} GlobalStep:{} TotalLoss:{:.5f} LinearLoss:{:.5f} "
|
||||
"MelLoss:{:.5f} StopLoss:{:.5f} GradNorm:{:.5f} "
|
||||
"GradNormST:{:.5f} StepTime:{:.2f} LR:{:.6f}".format(
|
||||
"GradNormST:{:.5f} AvgTextLen:{:.1f} StepTime:{:.2f} LR:{:.6f}".format(
|
||||
num_iter, batch_n_iter, current_step, loss.item(),
|
||||
linear_loss.item(), mel_loss.item(), stop_loss.item(),
|
||||
grad_norm, grad_norm_st, step_time, current_lr),
|
||||
grad_norm, grad_norm_st, avg_text_length, step_time, current_lr),
|
||||
flush=True)
|
||||
|
||||
avg_linear_loss += linear_loss.item()
|
||||
|
|
Loading…
Reference in New Issue