Update toy server for the recent updates

pull/10/head
Eren Golge 2018-11-19 15:27:22 +01:00
parent 0cca7920fc
commit b8ca19fd2c
4 changed files with 14 additions and 27 deletions

View File

@ -2,8 +2,8 @@
Steps to run:
1. Download one of the models given on the main page. Click [here](https://drive.google.com/drive/folders/1Q6BKeEkZyxSGsocK2p_mqgzLwlNvbHFJ?usp=sharing) for the lastest model.
2. Checkout the corresponding commit history or use ```server``` branch if you like to use the latest model.
2. Set the paths and the other options in the file ```server/conf.json```.
3. Run the server ```python server/server.py -c server/conf.json```. (Requires Flask)
4. Go to ```localhost:[given_port]``` and enjoy.
3. Set the paths and the other options in the file ```server/conf.json```.
4. Run the server ```python server/server.py -c server/conf.json```. (Requires Flask)
5. Go to ```localhost:[given_port]``` and enjoy.
For high quality results, please use the library versions shown in the ```requirements.txt``` file.

View File

@ -1,6 +1,6 @@
{
"model_path":"../models/May-22-2018_03_24PM-e6112f7",
"model_name":"checkpoint_272976.pth.tar",
"model_path":"/home/erogol/projects/runs/2579/keep/November-04-2018_06+19PM-TTS-master-_tmp-debug/",
"model_name":"best_model.pth.tar",
"model_config":"config.json",
"port": 5002,
"use_cuda": true

View File

@ -1,7 +1,7 @@
#!flask/bin/python
import argparse
from synthesizer import Synthesizer
from TTS.utils.generic_utils import load_config
from utils.generic_utils import load_config
from flask import Flask, Response, request, render_template, send_file
parser = argparse.ArgumentParser()

View File

@ -5,10 +5,10 @@ import torch
import scipy
import numpy as np
import soundfile as sf
from TTS.utils.text import text_to_sequence
from TTS.utils.generic_utils import load_config
from TTS.utils.audio import AudioProcessor
from TTS.models.tacotron import Tacotron
from utils.text import text_to_sequence
from utils.generic_utils import load_config
from utils.audio import AudioProcessor
from models.tacotron import Tacotron
from matplotlib import pylab as plt
@ -22,19 +22,8 @@ class Synthesizer(object):
config = load_config(model_config)
self.config = config
self.use_cuda = use_cuda
self.model = Tacotron(config.embedding_size, config.num_freq,
config.num_mels, config.r)
self.ap = AudioProcessor(
config.sample_rate,
config.num_mels,
config.min_level_db,
config.frame_shift_ms,
config.frame_length_ms,
config.preemphasis,
config.ref_level_db,
config.num_freq,
config.power,
griffin_lim_iters=60)
self.ap = AudioProcessor(**config.audio)
self.model = Tacotron(config.embedding_size, self.ap.num_freq, self.ap.num_mels, config.r)
# load model state
if use_cuda:
cp = torch.load(self.model_file)
@ -48,9 +37,8 @@ class Synthesizer(object):
self.model.eval()
def save_wav(self, wav, path):
wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16),
self.config.sample_rate)
# wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
self.ap.save_wav(wav, path)
def tts(self, text):
text_cleaner = [self.config.text_cleaner]
@ -70,7 +58,6 @@ class Synthesizer(object):
chars_var)
linear_out = linear_out[0].data.cpu().numpy()
wav = self.ap.inv_spectrogram(linear_out.T)
# wav = wav[:self.ap.find_endpoint(wav)]
out = io.BytesIO()
wavs.append(wav)
wavs.append(np.zeros(10000))