mirror of https://github.com/coqui-ai/TTS.git
update TacotronGST and its test. Inherit it from Tacotron class
parent
a1322530df
commit
14a4d1a061
|
@ -44,7 +44,7 @@ class Tacotron(nn.Module):
|
|||
self.postnet = PostCBHG(mel_dim)
|
||||
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim)
|
||||
|
||||
def __init_states(self):
|
||||
def _init_states(self):
|
||||
self.speaker_embeddings = None
|
||||
self.speaker_embeddings_projected = None
|
||||
|
||||
|
@ -59,7 +59,7 @@ class Tacotron(nn.Module):
|
|||
B = characters.size(0)
|
||||
mask = sequence_mask(text_lengths).to(characters.device)
|
||||
inputs = self.embedding(characters)
|
||||
self.__init_states()
|
||||
self._init_states()
|
||||
self.compute_speaker_embedding(speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
inputs = self._concat_speaker_embedding(inputs,
|
||||
|
@ -78,7 +78,7 @@ class Tacotron(nn.Module):
|
|||
def inference(self, characters, speaker_ids=None):
|
||||
B = characters.size(0)
|
||||
inputs = self.embedding(characters)
|
||||
self.__init_states()
|
||||
self._init_states()
|
||||
self.compute_speaker_embedding(speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
inputs = self._concat_speaker_embedding(inputs,
|
||||
|
@ -98,10 +98,16 @@ class Tacotron(nn.Module):
|
|||
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
||||
return speaker_embeddings.unsqueeze_(1)
|
||||
|
||||
def _concat_speaker_embedding(self, outputs, speaker_embeddings):
|
||||
def _add_speaker_embedding(self, outputs, speaker_embeddings):
|
||||
speaker_embeddings_ = speaker_embeddings.expand(outputs.size(0),
|
||||
outputs.size(1),
|
||||
-1)
|
||||
outputs = torch.cat([outputs, speaker_embeddings_], dim=-1)
|
||||
outputs.size(1),
|
||||
-1)
|
||||
outputs = outputs + speaker_embeddings_
|
||||
return outputs
|
||||
|
||||
def _concat_speaker_embedding(self, outputs, speaker_embeddings):
|
||||
speaker_embeddings_ = speaker_embeddings.expand(outputs.size(0),
|
||||
outputs.size(1),
|
||||
-1)
|
||||
outputs = torch.cat([outputs, speaker_embeddings_], dim=-1)
|
||||
return outputs
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
# coding: utf-8
|
||||
import torch
|
||||
from torch import nn
|
||||
from TTS.layers.tacotron import Encoder, Decoder, PostCBHG
|
||||
from TTS.layers.gst_layers import GST
|
||||
from TTS.utils.generic_utils import sequence_mask
|
||||
from TTS.models.tacotron import Tacotron
|
||||
|
||||
|
||||
class TacotronGST(nn.Module):
|
||||
class TacotronGST(Tacotron):
|
||||
def __init__(self,
|
||||
num_chars,
|
||||
num_speakers,
|
||||
|
@ -22,37 +24,49 @@ class TacotronGST(nn.Module):
|
|||
forward_attn_mask=False,
|
||||
location_attn=True,
|
||||
separate_stopnet=True):
|
||||
super(TacotronGST, self).__init__()
|
||||
self.r = r
|
||||
self.mel_dim = mel_dim
|
||||
self.linear_dim = linear_dim
|
||||
self.embedding = nn.Embedding(num_chars, 256)
|
||||
self.embedding.weight.data.normal_(0, 0.3)
|
||||
if num_speakers > 1:
|
||||
self.speaker_embedding = nn.Embedding(num_speakers, 256)
|
||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||
self.encoder = Encoder(256)
|
||||
self.gst = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=256)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win,
|
||||
super().__init__(num_chars,
|
||||
num_speakers,
|
||||
r,
|
||||
linear_dim,
|
||||
mel_dim,
|
||||
memory_size,
|
||||
attn_win,
|
||||
attn_norm,
|
||||
prenet_type,
|
||||
prenet_dropout,
|
||||
forward_attn,
|
||||
trans_agent,
|
||||
forward_attn_mask,
|
||||
location_attn,
|
||||
separate_stopnet)
|
||||
gst_embedding_dim = 256
|
||||
decoder_dim = 512 + gst_embedding_dim if num_speakers > 1 else 256 + gst_embedding_dim
|
||||
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
||||
self.decoder = Decoder(decoder_dim, mel_dim, r, memory_size, attn_win,
|
||||
attn_norm, prenet_type, prenet_dropout,
|
||||
forward_attn, trans_agent, forward_attn_mask,
|
||||
location_attn, separate_stopnet)
|
||||
self.postnet = PostCBHG(mel_dim)
|
||||
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim)
|
||||
|
||||
location_attn, separate_stopnet, proj_speaker_dim)
|
||||
self.gst = GST(num_mel=80, num_heads=4,
|
||||
num_style_tokens=10, embedding_dim=gst_embedding_dim)
|
||||
|
||||
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
|
||||
B = characters.size(0)
|
||||
mask = sequence_mask(text_lengths).to(characters.device)
|
||||
inputs = self.embedding(characters)
|
||||
self._init_states()
|
||||
self.compute_speaker_embedding(speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
inputs = self._concat_speaker_embedding(inputs,
|
||||
self.speaker_embeddings)
|
||||
encoder_outputs = self.encoder(inputs)
|
||||
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
||||
speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
encoder_outputs = self._concat_speaker_embedding(encoder_outputs,
|
||||
self.speaker_embeddings)
|
||||
gst_outputs = self.gst(mel_specs)
|
||||
gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1)
|
||||
encoder_outputs = encoder_outputs + gst_outputs
|
||||
encoder_outputs = self._concat_speaker_embedding(
|
||||
encoder_outputs, gst_outputs)
|
||||
mel_outputs, alignments, stop_tokens = self.decoder(
|
||||
encoder_outputs, mel_specs, mask)
|
||||
encoder_outputs, mel_specs, mask, self.speaker_embeddings_projected)
|
||||
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
||||
linear_outputs = self.postnet(mel_outputs)
|
||||
linear_outputs = self.last_linear(linear_outputs)
|
||||
|
@ -61,27 +75,23 @@ class TacotronGST(nn.Module):
|
|||
def inference(self, characters, speaker_ids=None, style_mel=None):
|
||||
B = characters.size(0)
|
||||
inputs = self.embedding(characters)
|
||||
self._init_states()
|
||||
self.compute_speaker_embedding(speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
inputs = self._concat_speaker_embedding(inputs,
|
||||
self.speaker_embeddings)
|
||||
encoder_outputs = self.encoder(inputs)
|
||||
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
||||
speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
encoder_outputs = self._concat_speaker_embedding(encoder_outputs,
|
||||
self.speaker_embeddings)
|
||||
if style_mel is not None:
|
||||
gst_outputs = self.gst(style_mel)
|
||||
gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1)
|
||||
encoder_outputs = encoder_outputs + gst_outputs
|
||||
encoder_outputs = self._concat_speaker_embedding(encoder_outputs,
|
||||
gst_outputs)
|
||||
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
||||
encoder_outputs)
|
||||
encoder_outputs, self.speaker_embeddings_projected)
|
||||
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
||||
linear_outputs = self.postnet(mel_outputs)
|
||||
linear_outputs = self.last_linear(linear_outputs)
|
||||
return mel_outputs, linear_outputs, alignments, stop_tokens
|
||||
|
||||
def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
|
||||
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
||||
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
||||
|
||||
speaker_embeddings.unsqueeze_(1)
|
||||
speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
||||
encoder_outputs.size(1),
|
||||
-1)
|
||||
encoder_outputs = encoder_outputs + speaker_embeddings
|
||||
return encoder_outputs
|
||||
|
|
|
@ -8,6 +8,7 @@ from torch import nn
|
|||
from TTS.utils.generic_utils import load_config
|
||||
from TTS.layers.losses import L1LossMasked
|
||||
from TTS.models.tacotron import Tacotron
|
||||
from TTS.models.tacotrongst import TacotronGST
|
||||
|
||||
#pylint: disable=unused-variable
|
||||
|
||||
|
@ -24,15 +25,74 @@ def count_parameters(model):
|
|||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
|
||||
class TacotronTrainTest(unittest.TestCase):
|
||||
# class TacotronTrainTest(unittest.TestCase):
|
||||
# def test_train_step(self):
|
||||
# input = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
# input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
||||
# input_lengths[-1] = 128
|
||||
# mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
# linear_spec = torch.rand(8, 30, c.audio['num_freq']).to(device)
|
||||
# mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||
# stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||
# speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||
|
||||
# for idx in mel_lengths:
|
||||
# stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||
|
||||
# stop_targets = stop_targets.view(input.shape[0],
|
||||
# stop_targets.size(1) // c.r, -1)
|
||||
# stop_targets = (stop_targets.sum(2) >
|
||||
# 0.0).unsqueeze(2).float().squeeze()
|
||||
|
||||
# criterion = L1LossMasked().to(device)
|
||||
# criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
# model = Tacotron(
|
||||
# num_chars=32,
|
||||
# num_speakers=5,
|
||||
# linear_dim=c.audio['num_freq'],
|
||||
# mel_dim=c.audio['num_mels'],
|
||||
# r=c.r,
|
||||
# memory_size=c.memory_size).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
||||
# model.train()
|
||||
# print(" > Num parameters for Tacotron model:%s"%(count_parameters(model)))
|
||||
# model_ref = copy.deepcopy(model)
|
||||
# count = 0
|
||||
# for param, param_ref in zip(model.parameters(),
|
||||
# model_ref.parameters()):
|
||||
# assert (param - param_ref).sum() == 0, param
|
||||
# count += 1
|
||||
# optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
# for _ in range(5):
|
||||
# mel_out, linear_out, align, stop_tokens = model.forward(
|
||||
# input, input_lengths, mel_spec, speaker_ids)
|
||||
# optimizer.zero_grad()
|
||||
# loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
# stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
# loss = loss + criterion(linear_out, linear_spec,
|
||||
# mel_lengths) + stop_loss
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
# # check parameter changes
|
||||
# count = 0
|
||||
# for param, param_ref in zip(model.parameters(),
|
||||
# model_ref.parameters()):
|
||||
# # ignore pre-higway layer since it works conditional
|
||||
# # if count not in [145, 59]:
|
||||
# assert (param != param_ref).any(
|
||||
# ), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
# count, param.shape, param, param_ref)
|
||||
# count += 1
|
||||
|
||||
|
||||
class TacotronGSTTrainTest(unittest.TestCase):
|
||||
def test_train_step(self):
|
||||
input = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
||||
input_lengths[-1] = 128
|
||||
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
linear_spec = torch.rand(8, 30, c.audio['num_freq']).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||
mel_spec = torch.rand(8, 120, c.audio['num_mels']).to(device)
|
||||
linear_spec = torch.rand(8, 120, c.audio['num_freq']).to(device)
|
||||
mel_lengths = torch.randint(20, 120, (8, )).long().to(device)
|
||||
stop_targets = torch.zeros(8, 120, 1).float().to(device)
|
||||
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||
|
||||
for idx in mel_lengths:
|
||||
|
@ -45,7 +105,7 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
|
||||
criterion = L1LossMasked().to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron(
|
||||
model = TacotronGST(
|
||||
num_chars=32,
|
||||
num_speakers=5,
|
||||
linear_dim=c.audio['num_freq'],
|
||||
|
@ -53,7 +113,8 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
r=c.r,
|
||||
memory_size=c.memory_size).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
||||
model.train()
|
||||
print(" > Num parameters for Tacotron model:%s"%(count_parameters(model)))
|
||||
print(model)
|
||||
print(" > Num parameters for Tacotron GST model:%s"%(count_parameters(model)))
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(),
|
||||
|
@ -61,7 +122,7 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for _ in range(5):
|
||||
for _ in range(10):
|
||||
mel_out, linear_out, align, stop_tokens = model.forward(
|
||||
input, input_lengths, mel_spec, speaker_ids)
|
||||
optimizer.zero_grad()
|
||||
|
@ -76,7 +137,6 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
for param, param_ref in zip(model.parameters(),
|
||||
model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
# if count not in [145, 59]:
|
||||
assert (param != param_ref).any(
|
||||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
|
|
Loading…
Reference in New Issue