mirror of https://github.com/coqui-ai/TTS.git
integrade concatinative speker embedding to tacotron
parent
d45d963dc1
commit
a1322530df
|
@ -273,7 +273,7 @@ class Decoder(nn.Module):
|
|||
def __init__(self, in_features, memory_dim, r, memory_size, attn_windowing,
|
||||
attn_norm, prenet_type, prenet_dropout, forward_attn,
|
||||
trans_agent, forward_attn_mask, location_attn,
|
||||
separate_stopnet):
|
||||
separate_stopnet, speaker_embedding_dim):
|
||||
super(Decoder, self).__init__()
|
||||
self.r_init = r
|
||||
self.r = r
|
||||
|
@ -285,8 +285,9 @@ class Decoder(nn.Module):
|
|||
self.separate_stopnet = separate_stopnet
|
||||
self.query_dim = 256
|
||||
# memory -> |Prenet| -> processed_memory
|
||||
prenet_dim = memory_dim * self.memory_size + speaker_embedding_dim if self.use_memory_queue else memory_dim + speaker_embedding_dim
|
||||
self.prenet = Prenet(
|
||||
memory_dim * self.memory_size if self.use_memory_queue else memory_dim,
|
||||
prenet_dim,
|
||||
prenet_type,
|
||||
prenet_dropout,
|
||||
out_features=[256, 128])
|
||||
|
@ -407,7 +408,7 @@ class Decoder(nn.Module):
|
|||
# use only the last frame prediction
|
||||
self.memory_input = new_memory[:, :self.memory_dim]
|
||||
|
||||
def forward(self, inputs, memory, mask):
|
||||
def forward(self, inputs, memory, mask, speaker_embeddings=None):
|
||||
"""
|
||||
Args:
|
||||
inputs: Encoder outputs.
|
||||
|
@ -432,6 +433,8 @@ class Decoder(nn.Module):
|
|||
if t > 0:
|
||||
new_memory = memory[t - 1]
|
||||
self._update_memory_input(new_memory)
|
||||
if speaker_embeddings is not None:
|
||||
self.memory_input = torch.cat([self.memory_input, speaker_embeddings], dim=-1)
|
||||
output, stop_token, attention = self.decode(inputs, mask)
|
||||
outputs += [output]
|
||||
attentions += [attention]
|
||||
|
@ -440,13 +443,15 @@ class Decoder(nn.Module):
|
|||
|
||||
return self._parse_outputs(outputs, attentions, stop_tokens)
|
||||
|
||||
def inference(self, inputs):
|
||||
def inference(self, inputs, speaker_embeddings=None):
|
||||
"""
|
||||
Args:
|
||||
inputs: Encoder outputs.
|
||||
inputs: encoder outputs.
|
||||
speaker_embeddings: speaker vectors.
|
||||
|
||||
Shapes:
|
||||
- inputs: batch x time x encoder_out_dim
|
||||
- speaker_embeddings: batch x embed_dim
|
||||
"""
|
||||
outputs = []
|
||||
attentions = []
|
||||
|
@ -459,6 +464,8 @@ class Decoder(nn.Module):
|
|||
if t > 0:
|
||||
new_memory = outputs[-1]
|
||||
self._update_memory_input(new_memory)
|
||||
if speaker_embeddings is not None:
|
||||
self.memory_input = torch.cat([self.memory_input, speaker_embeddings], dim=-1)
|
||||
output, stop_token, attention = self.decode(inputs, None)
|
||||
stop_token = torch.sigmoid(stop_token.data)
|
||||
outputs += [output]
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# coding: utf-8
|
||||
import torch
|
||||
from torch import nn
|
||||
from TTS.layers.tacotron import Encoder, Decoder, PostCBHG
|
||||
from TTS.utils.generic_utils import sequence_mask
|
||||
|
@ -25,28 +26,50 @@ class Tacotron(nn.Module):
|
|||
self.r = r
|
||||
self.mel_dim = mel_dim
|
||||
self.linear_dim = linear_dim
|
||||
self.num_speakers = num_speakers
|
||||
self.embedding = nn.Embedding(num_chars, 256)
|
||||
self.embedding.weight.data.normal_(0, 0.3)
|
||||
decoder_dim = 512 if num_speakers > 1 else 256
|
||||
encoder_dim = 512 if num_speakers > 1 else 256
|
||||
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
||||
if num_speakers > 1:
|
||||
self.speaker_embedding = nn.Embedding(num_speakers, 256)
|
||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||
self.encoder = Encoder(256)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win,
|
||||
self.speaker_project_mel = nn.Sequential(nn.Linear(256, proj_speaker_dim), nn.Tanh())
|
||||
self.encoder = Encoder(encoder_dim)
|
||||
self.decoder = Decoder(decoder_dim, mel_dim, r, memory_size, attn_win,
|
||||
attn_norm, prenet_type, prenet_dropout,
|
||||
forward_attn, trans_agent, forward_attn_mask,
|
||||
location_attn, separate_stopnet)
|
||||
location_attn, separate_stopnet, proj_speaker_dim)
|
||||
self.postnet = PostCBHG(mel_dim)
|
||||
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim)
|
||||
|
||||
|
||||
def __init_states(self):
|
||||
self.speaker_embeddings = None
|
||||
self.speaker_embeddings_projected = None
|
||||
|
||||
def compute_speaker_embedding(self, speaker_ids):
|
||||
if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
||||
raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
|
||||
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
||||
self.speaker_embeddings = self._compute_speaker_embedding(speaker_ids)
|
||||
self.speaker_embeddings_projected = self.speaker_project_mel(self.speaker_embeddings).squeeze(1)
|
||||
|
||||
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
|
||||
B = characters.size(0)
|
||||
mask = sequence_mask(text_lengths).to(characters.device)
|
||||
inputs = self.embedding(characters)
|
||||
self.__init_states()
|
||||
self.compute_speaker_embedding(speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
inputs = self._concat_speaker_embedding(inputs,
|
||||
self.speaker_embeddings)
|
||||
encoder_outputs = self.encoder(inputs)
|
||||
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
||||
speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
encoder_outputs = self._concat_speaker_embedding(encoder_outputs,
|
||||
self.speaker_embeddings)
|
||||
mel_outputs, alignments, stop_tokens = self.decoder(
|
||||
encoder_outputs, mel_specs, mask)
|
||||
encoder_outputs, mel_specs, mask, self.speaker_embeddings_projected)
|
||||
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
||||
linear_outputs = self.postnet(mel_outputs)
|
||||
linear_outputs = self.last_linear(linear_outputs)
|
||||
|
@ -55,25 +78,30 @@ class Tacotron(nn.Module):
|
|||
def inference(self, characters, speaker_ids=None):
|
||||
B = characters.size(0)
|
||||
inputs = self.embedding(characters)
|
||||
self.__init_states()
|
||||
self.compute_speaker_embedding(speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
inputs = self._concat_speaker_embedding(inputs,
|
||||
self.speaker_embeddings)
|
||||
encoder_outputs = self.encoder(inputs)
|
||||
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
||||
speaker_ids)
|
||||
if self.num_speakers > 1:
|
||||
encoder_outputs = self._concat_speaker_embedding(encoder_outputs,
|
||||
self.speaker_embeddings)
|
||||
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
||||
encoder_outputs)
|
||||
encoder_outputs, self.speaker_embeddings_projected)
|
||||
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
||||
linear_outputs = self.postnet(mel_outputs)
|
||||
linear_outputs = self.last_linear(linear_outputs)
|
||||
return mel_outputs, linear_outputs, alignments, stop_tokens
|
||||
|
||||
def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
|
||||
if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
||||
raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
|
||||
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
||||
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
||||
def _compute_speaker_embedding(self, speaker_ids):
|
||||
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
||||
return speaker_embeddings.unsqueeze_(1)
|
||||
|
||||
def _concat_speaker_embedding(self, outputs, speaker_embeddings):
|
||||
speaker_embeddings_ = speaker_embeddings.expand(outputs.size(0),
|
||||
outputs.size(1),
|
||||
-1)
|
||||
outputs = torch.cat([outputs, speaker_embeddings_], dim=-1)
|
||||
return outputs
|
||||
|
||||
speaker_embeddings.unsqueeze_(1)
|
||||
speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
||||
encoder_outputs.size(1),
|
||||
-1)
|
||||
encoder_outputs = encoder_outputs + speaker_embeddings
|
||||
return encoder_outputs
|
||||
|
|
|
@ -54,7 +54,8 @@ class DecoderTests(unittest.TestCase):
|
|||
trans_agent=True,
|
||||
forward_attn_mask=True,
|
||||
location_attn=True,
|
||||
separate_stopnet=True)
|
||||
separate_stopnet=True,
|
||||
speaker_embedding_dim=0)
|
||||
dummy_input = T.rand(4, 8, 256)
|
||||
dummy_memory = T.rand(4, 2, 80)
|
||||
|
||||
|
@ -66,6 +67,34 @@ class DecoderTests(unittest.TestCase):
|
|||
assert output.shape[2] == 80 * 2, "size not {}".format(output.shape[2])
|
||||
assert stop_tokens.shape[0] == 4
|
||||
|
||||
def test_in_out_multispeaker(self):
|
||||
layer = Decoder(
|
||||
in_features=256,
|
||||
memory_dim=80,
|
||||
r=2,
|
||||
memory_size=4,
|
||||
attn_windowing=False,
|
||||
attn_norm="sigmoid",
|
||||
prenet_type='original',
|
||||
prenet_dropout=True,
|
||||
forward_attn=True,
|
||||
trans_agent=True,
|
||||
forward_attn_mask=True,
|
||||
location_attn=True,
|
||||
separate_stopnet=True,
|
||||
speaker_embedding_dim=80)
|
||||
dummy_input = T.rand(4, 8, 256)
|
||||
dummy_memory = T.rand(4, 2, 80)
|
||||
dummy_embed = T.rand(4, 80)
|
||||
|
||||
output, alignment, stop_tokens = layer(
|
||||
dummy_input, dummy_memory, mask=None, speaker_embeddings=dummy_embed)
|
||||
|
||||
assert output.shape[0] == 4
|
||||
assert output.shape[1] == 1, "size not {}".format(output.shape[1])
|
||||
assert output.shape[2] == 80 * 2, "size not {}".format(output.shape[2])
|
||||
assert stop_tokens.shape[0] == 4
|
||||
|
||||
|
||||
class EncoderTests(unittest.TestCase):
|
||||
def test_in_out(self):
|
||||
|
|
Loading…
Reference in New Issue