TTS/utils/synthesis.py

117 lines
4.1 KiB
Python
Raw Normal View History

2018-11-02 15:13:51 +00:00
import io
import time
import librosa
import torch
import numpy as np
2019-02-25 16:20:05 +00:00
from .text import text_to_sequence, phoneme_to_sequence, sequence_to_phoneme
2018-11-02 15:13:51 +00:00
from .visual import visualize
from matplotlib import pylab as plt
2019-06-12 10:12:22 +00:00
def text_to_seqvec(text, CONFIG, use_cuda):
text_cleaner = [CONFIG.text_cleaner]
# text ot phonemes to sequence vector
2019-06-12 10:12:22 +00:00
if CONFIG.use_phonemes:
seq = np.asarray(
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language,
CONFIG.enable_eos_bos_chars),
2019-06-12 10:12:22 +00:00
dtype=np.int32)
else:
seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32)
# torch tensor
2019-06-12 10:12:22 +00:00
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda()
return chars_var.long()
def compute_style_mel(style_wav, ap, use_cuda):
print(style_wav)
style_mel = torch.FloatTensor(ap.melspectrogram(
ap.load_wav(style_wav))).unsqueeze(0)
if use_cuda:
return style_mel.cuda()
else:
return style_mel
def run_model(model, inputs, CONFIG, truncated, style_mel=None):
if CONFIG.model == "TacotronGST" and style_mel is not None:
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
inputs, style_mel)
else:
if truncated:
decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated(
inputs)
else:
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
inputs)
return decoder_output, postnet_output, alignments, stop_tokens
2019-06-12 10:12:22 +00:00
def parse_outputs(postnet_output, decoder_output, alignments):
postnet_output = postnet_output[0].data.cpu().numpy()
decoder_output = decoder_output[0].data.cpu().numpy()
alignment = alignments[0].cpu().data.numpy()
return postnet_output, decoder_output, alignment
2019-06-12 10:12:22 +00:00
def trim_silence(wav):
return wav[:ap.find_endpoint(wav)]
2019-06-12 10:12:22 +00:00
def inv_spectrogram(postnet_output, ap, CONFIG):
if CONFIG.model in ["Tacotron", "TacotronGST"]:
wav = ap.inv_spectrogram(postnet_output.T)
else:
wav = ap.inv_mel_spectrogram(postnet_output.T)
return wav
2019-06-12 10:12:22 +00:00
def synthesis(model,
text,
2019-06-26 10:59:14 +00:00
speaker_id,
CONFIG,
use_cuda,
ap,
style_wav=None,
truncated=False,
enable_eos_bos_chars=False,
trim_silence=False):
2019-03-11 16:40:09 +00:00
"""Synthesize voice for the given text.
Args:
model (TTS.models): model to synthesize.
text (str): target text
2019-06-26 10:59:14 +00:00
speaker_id (int): id of speaker
2019-03-11 16:40:09 +00:00
CONFIG (dict): config dictionary to be loaded from config.json.
use_cuda (bool): enable cuda.
ap (TTS.utils.audio.AudioProcessor): audio processor to process
model outputs.
2019-06-12 10:12:01 +00:00
style_wav (str): Uses for style embedding of GST.
2019-03-11 16:40:09 +00:00
truncated (bool): keep model states after inference. It can be used
for continuous inference at long texts.
2019-04-12 14:12:15 +00:00
enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence.
trim_silence (bool): trim silence after synthesis.
2019-03-11 16:40:09 +00:00
"""
2019-06-12 10:12:01 +00:00
# GST processing
2019-06-14 23:22:27 +00:00
style_mel = None
2019-06-12 10:12:01 +00:00
if CONFIG.model == "TacotronGST" and style_wav is not None:
style_mel = compute_style_mel(style_wav, ap, use_cuda)
2019-04-12 14:12:15 +00:00
# preprocess the given text
inputs = text_to_seqvec(text, CONFIG, use_cuda)
2019-06-26 10:59:14 +00:00
speaker_id = speaker_id_var = torch.from_numpy(speaker_id).unsqueeze(0)
if use_cuda:
speaker_id.cuda()
2019-04-12 14:12:15 +00:00
# synthesize voice
decoder_output, postnet_output, alignments, stop_tokens = run_model(
model, inputs, CONFIG, truncated, style_mel)
2019-04-12 14:12:15 +00:00
# convert outputs to numpy
postnet_output, decoder_output, alignment = parse_outputs(
postnet_output, decoder_output, alignments)
2019-04-12 14:12:15 +00:00
# plot results
wav = inv_spectrogram(postnet_output, ap, CONFIG)
2019-04-12 14:12:15 +00:00
# trim silence
if trim_silence:
wav = trim_silence(wav)
return wav, alignment, decoder_output, postnet_output, stop_tokens