mirror of https://github.com/coqui-ai/TTS.git
config update, audio.py update and modularize synthesize.py
parent
e061ed091a
commit
037ec13453
6
.compute
6
.compute
|
@ -10,7 +10,7 @@ wget https://www.dropbox.com/s/wqn5v3wkktw9lmo/install.sh?dl=0 -O install.sh
|
|||
sudo sh install.sh
|
||||
python3 setup.py develop
|
||||
# cp -R ${USER_DIR}/GermanData ../tmp/
|
||||
# python3 distribute.py --config_path config_tacotron_de.json --data_path ../tmp/GermanData/karlsson/
|
||||
cp -R ${USER_DIR}/Mozilla_22050 ../tmp/
|
||||
python3 distribute.py --config_path config_tacotron_gst.json --data_path ../tmp/Mozilla_22050/
|
||||
python3 distribute.py --config_path config_tacotron_de.json --data_path ${USER_DIR}/GermanData/karlsson/
|
||||
# cp -R ${USER_DIR}/Mozilla_22050 ../tmp/
|
||||
# python3 distribute.py --config_path config_tacotron_gst.json --data_path ../tmp/Mozilla_22050/
|
||||
while true; do sleep 1000000; done
|
||||
|
|
|
@ -1,85 +1,117 @@
|
|||
{
|
||||
"run_name": "german-tacotron-tagent-bn",
|
||||
"run_description": "train german",
|
||||
|
||||
"audio":{
|
||||
// Audio processing parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"frame_length_ms": 50, // stft window length in ms.
|
||||
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"min_level_db": -100, // normalization range
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize the spec values in range [0, 1]
|
||||
"symmetric_norm": false, // move normalization to range [-1, 1]
|
||||
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
},
|
||||
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [],
|
||||
|
||||
"model": "Tacotron", // one of the model in models/
|
||||
"grad_clip": 1, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
"prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet.
|
||||
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
"transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
|
||||
"location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
"github_branch":"tacotron-gst-softmax",
|
||||
"run_name": "german-tacotron-gst-softmax",
|
||||
"run_description": "train german with all of the german dataset",
|
||||
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"eval_batch_size":16,
|
||||
"r": 5, // Number of frames to predict for step.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||
"print_step": 10, // Number of steps to log traning on console.
|
||||
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
|
||||
|
||||
"run_eval": false,
|
||||
"test_sentences_file": "de_sentences.txt", // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
"test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time.
|
||||
"data_path": "/media/erogol/data_ssd/Data/Mozilla/", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": [
|
||||
"grune_haus/metadata.csv",
|
||||
"kleine_lord/metadata.csv",
|
||||
"toten_seelen/metadata.csv",
|
||||
"werde_die_du_bist/metadata.csv"
|
||||
], // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "mailabs", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 200, // DATASET-RELATED: maximum text length
|
||||
"output_path": "/media/erogol/data_ssd/Data/models/german/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"phoneme_cache_path": "phoneme_cache", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "de", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
"text_cleaner": "phoneme_cleaners"
|
||||
}
|
||||
|
||||
"audio":{
|
||||
// Audio processing parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"frame_length_ms": 50, // stft window length in ms.
|
||||
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"min_level_db": -100, // normalization range
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize the spec values in range [0, 1]
|
||||
"symmetric_norm": false, // move normalization to range [-1, 1]
|
||||
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
},
|
||||
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [],
|
||||
|
||||
"model": "Tacotron", // one of the model in models/
|
||||
"grad_clip": 1, // upper limit for gradients for clipping.
|
||||
"epochs": 10000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
"attention_norm": "softmax", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
"prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet.
|
||||
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
"transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
|
||||
"forward_attn_mask": true,
|
||||
"location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"eval_batch_size":32,
|
||||
"r": 5, // Number of frames to predict for step.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||
"print_step": 10, // Number of steps to log traning on console.
|
||||
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
|
||||
|
||||
"run_eval": false,
|
||||
"test_sentences_file": "de_sentences.txt", // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
"test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time.
|
||||
"data_path": "/home/erogol/Data/m-ai-labs/de_DE/by_book/" , // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": [
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/mix/erzaehlungen_poe/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/mix/auf_zwei_planeten/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/kleinzaches/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/spiegel_kaetzchen/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/herrnarnesschatz/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/maedchen_von_moorhof/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/koenigsgaukler/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/altehous/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/odysseus/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/undine/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/reise_tilsit/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/schmied_seines_glueckes/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/kammmacher/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/unterm_birnbaum/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/liebesbriefe/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/male/karlsson/sandmann/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/eva_k/kleine_lord/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/eva_k/toten_seelen/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/eva_k/werde_die_du_bist/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/eva_k/grune_haus/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/rebecca_braunert_plunkett/das_letzte_marchen/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/rebecca_braunert_plunkett/ferien_vom_ich/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/rebecca_braunert_plunkett/maerchen/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/rebecca_braunert_plunkett/mein_weg_als_deutscher_und_jude/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/caspar/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/sterben/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/weihnachtsabend/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/frankenstein/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/tschun/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/menschenhasser/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/grune_gesicht/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/tom_sawyer/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/ramona_deininger/alter_afrikaner/metadata.csv",
|
||||
"/home/erogol/Data/m-ai-labs/de_DE/by_book/female/angela_merkel/merkel_alone/metadata.csv"
|
||||
], // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": null, // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "mailabs", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 15, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 200, // DATASET-RELATED: maximum text length
|
||||
"output_path": "/media/erogol/data_ssd/Data/models/mozilla_models/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"phoneme_cache_path": "phoneme_cache", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "de", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
"text_cleaner": "phoneme_cleaners"
|
||||
}
|
||||
|
|
@ -63,7 +63,9 @@ def mailabs(root_path, meta_files):
|
|||
"""Normalizes M-AI-Labs meta data files to TTS format"""
|
||||
if meta_files is None:
|
||||
meta_files = glob(root_path+"/**/metadata.csv", recursive=True)
|
||||
folders = [os.path.dirname(f.strip()) for f in meta_files]
|
||||
folders = [f.strip().split("/")[-2] for f in meta_files]
|
||||
else:
|
||||
folders = [f.strip().split("by_book")[1][1:] for f in meta_files]
|
||||
# meta_files = [f.strip() for f in meta_files.split(",")]
|
||||
items = []
|
||||
for idx, meta_file in enumerate(meta_files):
|
||||
|
@ -73,13 +75,12 @@ def mailabs(root_path, meta_files):
|
|||
with open(txt_file, 'r') as ttf:
|
||||
for line in ttf:
|
||||
cols = line.split('|')
|
||||
wav_file = os.path.join(root_path, folder, 'wavs',
|
||||
cols[0] + '.wav')
|
||||
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), 'wavs', cols[0] + '.wav')
|
||||
if os.path.isfile(wav_file):
|
||||
text = cols[1]
|
||||
text = cols[1].strip()
|
||||
items.append([text, wav_file])
|
||||
else:
|
||||
continue
|
||||
raise RuntimeError("> File %s is not exist!"%(wav_file))
|
||||
return items
|
||||
|
||||
|
||||
|
|
|
@ -216,32 +216,23 @@ class AudioProcessor(object):
|
|||
return librosa.effects.trim(
|
||||
wav, top_db=40, frame_length=1024, hop_length=256)[0]
|
||||
|
||||
def mulaw_encode(self, wav, qc):
|
||||
@staticmethod
|
||||
def mulaw_encode(wav, qc):
|
||||
mu = 2 ** qc - 1
|
||||
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
||||
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
|
||||
# Quantize signal to the specified number of levels.
|
||||
signal = (signal + 1) / 2 * mu + 0.5
|
||||
return np.floor(signal,)
|
||||
return np.floor(signal)
|
||||
|
||||
@staticmethod
|
||||
def mulaw_decode(wav, qc):
|
||||
"""Recovers waveform from quantized values."""
|
||||
# from IPython.core.debugger import set_trace
|
||||
# set_trace()
|
||||
mu = 2 ** qc - 1
|
||||
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
|
||||
return x
|
||||
# mu = 2 ** qc - 1.
|
||||
# # Map values back to [-1, 1].
|
||||
# # casted = wav.astype(np.float32)
|
||||
# # signal = 2 * casted / mu - 1
|
||||
# # Perform inverse of mu-law transformation.
|
||||
# magnitude = (1 / mu) * ((1 + mu) ** abs(wav) - 1)
|
||||
# return np.sign(wav) * magnitude
|
||||
|
||||
def load_wav(self, filename, encode=False):
|
||||
x, sr = sf.read(filename)
|
||||
# x, sr = librosa.load(filename, sr=self.sample_rate)
|
||||
if self.do_trim_silence:
|
||||
x = self.trim_silence(x)
|
||||
# sr, x = io.wavfile.read(filename)
|
||||
|
|
|
@ -10,36 +10,73 @@ from matplotlib import pylab as plt
|
|||
|
||||
def text_to_seqvec(text, CONFIG, use_cuda):
|
||||
text_cleaner = [CONFIG.text_cleaner]
|
||||
# text ot phonemes to sequence vector
|
||||
if CONFIG.use_phonemes:
|
||||
seq = np.asarray(
|
||||
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language, enable_eos_bos_chars),
|
||||
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language,
|
||||
CONFIG.enable_eos_bos_chars),
|
||||
dtype=np.int32)
|
||||
else:
|
||||
seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32)
|
||||
# torch tensor
|
||||
chars_var = torch.from_numpy(seq).unsqueeze(0)
|
||||
if use_cuda:
|
||||
chars_var = chars_var.cuda()
|
||||
return chars_var.long()
|
||||
|
||||
|
||||
def compute_style_mel(style_wav, ap):
|
||||
style_mel = torch.FloatTensor(ap.melspectrogram(ap.load_wav(style_wav))).unsqueeze(0)
|
||||
return style_mel
|
||||
def compute_style_mel(style_wav, ap, use_cuda):
|
||||
print(style_wav)
|
||||
style_mel = torch.FloatTensor(ap.melspectrogram(
|
||||
ap.load_wav(style_wav))).unsqueeze(0)
|
||||
if use_cuda:
|
||||
return style_mel.cuda()
|
||||
else:
|
||||
return style_mel
|
||||
|
||||
|
||||
def run_model():
|
||||
pass
|
||||
def run_model(model, inputs, CONFIG, truncated, style_mel=None):
|
||||
if CONFIG.model == "TacotronGST" and style_mel is not None:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
||||
inputs, style_mel)
|
||||
else:
|
||||
if truncated:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated(
|
||||
inputs)
|
||||
else:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
||||
inputs)
|
||||
return decoder_output, postnet_output, alignments, stop_tokens
|
||||
|
||||
|
||||
def parse_outputs():
|
||||
pass
|
||||
def parse_outputs(postnet_output, decoder_output, alignments):
|
||||
postnet_output = postnet_output[0].data.cpu().numpy()
|
||||
decoder_output = decoder_output[0].data.cpu().numpy()
|
||||
alignment = alignments[0].cpu().data.numpy()
|
||||
return postnet_output, decoder_output, alignment
|
||||
|
||||
|
||||
def trim_silence():
|
||||
pass
|
||||
def trim_silence(wav):
|
||||
return wav[:ap.find_endpoint(wav)]
|
||||
|
||||
|
||||
def synthesis(model, text, CONFIG, use_cuda, ap, style_wav=None, truncated=False, enable_eos_bos_chars=False, trim_silence=False):
|
||||
def inv_spectrogram(postnet_output, ap, CONFIG):
|
||||
if CONFIG.model in ["Tacotron", "TacotronGST"]:
|
||||
wav = ap.inv_spectrogram(postnet_output.T)
|
||||
else:
|
||||
wav = ap.inv_mel_spectrogram(postnet_output.T)
|
||||
return wav
|
||||
|
||||
|
||||
def synthesis(model,
|
||||
text,
|
||||
CONFIG,
|
||||
use_cuda,
|
||||
ap,
|
||||
style_wav=None,
|
||||
truncated=False,
|
||||
enable_eos_bos_chars=False,
|
||||
trim_silence=False):
|
||||
"""Synthesize voice for the given text.
|
||||
|
||||
Args:
|
||||
|
@ -57,38 +94,18 @@ def synthesis(model, text, CONFIG, use_cuda, ap, style_wav=None, truncated=False
|
|||
"""
|
||||
# GST processing
|
||||
if CONFIG.model == "TacotronGST" and style_wav is not None:
|
||||
style_mel = compute_style_mel(style_wav, ap)
|
||||
|
||||
style_mel = compute_style_mel(style_wav, ap, use_cuda)
|
||||
# preprocess the given text
|
||||
text_cleaner = [CONFIG.text_cleaner]
|
||||
if CONFIG.use_phonemes:
|
||||
seq = np.asarray(
|
||||
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language, enable_eos_bos_chars),
|
||||
dtype=np.int32)
|
||||
else:
|
||||
seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32)
|
||||
chars_var = torch.from_numpy(seq).unsqueeze(0)
|
||||
inputs = text_to_seqvec(text, CONFIG, use_cuda)
|
||||
# synthesize voice
|
||||
if CONFIG.model == "TacotronGST" and style_wav is not None:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
||||
chars_var.long(), style_mel)
|
||||
else:
|
||||
if truncated:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated(
|
||||
chars_var.long())
|
||||
else:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
||||
chars_var.long())
|
||||
decoder_output, postnet_output, alignments, stop_tokens = run_model(
|
||||
model, inputs, CONFIG, truncated, style_mel)
|
||||
# convert outputs to numpy
|
||||
postnet_output = postnet_output[0].data.cpu().numpy()
|
||||
decoder_output = decoder_output[0].data.cpu().numpy()
|
||||
alignment = alignments[0].cpu().data.numpy()
|
||||
postnet_output, decoder_output, alignment = parse_outputs(
|
||||
postnet_output, decoder_output, alignments)
|
||||
# plot results
|
||||
if CONFIG.model in ["Tacotron", "TacotronGST"]:
|
||||
wav = ap.inv_spectrogram(postnet_output.T)
|
||||
else:
|
||||
wav = ap.inv_mel_spectrogram(postnet_output.T)
|
||||
wav = inv_spectrogram(postnet_output, ap, CONFIG)
|
||||
# trim silence
|
||||
if trim_silence:
|
||||
wav = wav[:ap.find_endpoint(wav)]
|
||||
wav = trim_silence(wav)
|
||||
return wav, alignment, decoder_output, postnet_output, stop_tokens
|
Loading…
Reference in New Issue