2018-06-20 15:10:27 +00:00
{
2019-03-06 21:06:01 +00:00
"run_name" : "bos" ,
"run_description" : "bos character added to get away with the first char miss" ,
2018-07-05 15:29:04 +00:00
2018-11-02 15:13:51 +00:00
"audio" : {
2018-11-02 16:27:31 +00:00
// Audio processing parameters
2018-11-02 15:13:51 +00:00
"num_mels" : 80 , // size of the mel spec frame.
"num_freq" : 1025 , // number of stft frequency levels. Size of the linear spectogram frame.
2019-02-12 09:03:55 +00:00
"sample_rate" : 22050 , // wav sample-rate. If different than the original data, it is resampled.
2018-11-02 15:13:51 +00:00
"frame_length_ms" : 50 , // stft window length in ms.
"frame_shift_ms" : 12.5 , // stft window hop-lengh in ms.
2019-01-17 14:48:22 +00:00
"preemphasis" : 0.98 , // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
2018-11-02 15:13:51 +00:00
"min_level_db" : -100 , // normalization range
2019-02-12 09:03:55 +00:00
"ref_level_db" : 20 , // reference level db, theoretically 20db is the sound of air.
2018-11-02 15:13:51 +00:00
"power" : 1.5 , // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters" : 60 , // #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
2018-11-02 16:27:31 +00:00
// Normalization parameters
2018-11-02 15:13:51 +00:00
"signal_norm" : true , // normalize the spec values in range [0, 1]
"symmetric_norm" : false , // move normalization to range [-1, 1]
"max_norm" : 1 , // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm" : true , // clip normalized values into the range.
2019-03-06 12:09:21 +00:00
"mel_fmin" : 0.0 , // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax" : 8000.0 , // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence" : false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
2018-11-02 15:13:51 +00:00
} ,
2018-09-06 12:33:21 +00:00
2019-02-27 08:50:52 +00:00
"distributed" : {
"backend" : "nccl" ,
"url" : "tcp:\/\/localhost:54321"
} ,
2019-03-23 16:33:47 +00:00
"reinit_layers" : [ "model.decoder.attention_layer" ] , //set which layers to be reinitialized in finetunning. Only used if --restore_model is provided.
2019-03-23 16:19:40 +00:00
2019-03-06 21:06:01 +00:00
"model" : "Tacotron2" , // one of the model in models/
2019-03-06 12:09:21 +00:00
"grad_clip" : 0.02 , // upper limit for gradients for clipping.
2019-01-08 16:08:27 +00:00
"epochs" : 1000 , // total number of epochs to train.
2019-02-16 02:17:59 +00:00
"lr" : 0.0001 , // Initial learning rate. If Noam decay is active, maximum learning rate.
2019-01-08 16:08:27 +00:00
"lr_decay" : false , // if true, Noam learning rate decaying is applied through training.
"warmup_steps" : 4000 , // Noam decay steps to increase the learning rate from 0 to "lr"
2019-02-12 09:03:55 +00:00
"windowing" : false , // Enables attention windowing. Used only in eval mode.
2019-03-06 12:09:21 +00:00
"memory_size" : 5 , // TO BE IMPLEMENTED -- memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
2019-03-25 23:52:47 +00:00
"attention_norm" : "softmax" , // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
2018-11-03 18:47:28 +00:00
2019-03-06 12:09:21 +00:00
"batch_size" : 16 , // Batch size for training. Lower values than 32 might cause hard to learn attention.
"eval_batch_size" : 16 ,
"r" : 1 , // Number of frames to predict for step.
2019-03-06 21:06:01 +00:00
"wd" : 0.000002 , // Weight decay weight.
2019-01-07 14:23:51 +00:00
"checkpoint" : true , // If true, it saves checkpoints per "save_step"
2019-03-06 12:09:21 +00:00
"save_step" : 1000 , // Number of training steps expected to save traning stats and checkpoints.
"print_step" : 10 , // Number of steps to log traning on console.
2019-02-12 09:03:55 +00:00
"tb_model_param_stats" : false , // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
2019-02-27 08:50:52 +00:00
"batch_group_size" : 8 , //Number of batches to shuffle after bucketing.
2018-11-02 15:13:51 +00:00
"run_eval" : true ,
2019-02-27 08:50:52 +00:00
"test_delay_epochs" : 100 , //Until attention is aligned, testing only wastes computation time.
2019-02-12 09:03:55 +00:00
"data_path" : "/media/erogol/data_ssd/Data/LJSpeech-1.1" , // DATASET-RELATED: can overwritten from command argument
"meta_file_train" : "metadata_train.csv" , // DATASET-RELATED: metafile for training dataloader.
"meta_file_val" : "metadata_val.csv" , // DATASET-RELATED: metafile for evaluation dataloader.
"dataset" : "ljspeech" , // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
2019-01-07 14:23:51 +00:00
"min_seq_len" : 0 , // DATASET-RELATED: minimum text length to use in training
2019-03-06 12:09:21 +00:00
"max_seq_len" : 1000 , // DATASET-RELATED: maximum text length
2019-02-12 09:03:55 +00:00
"output_path" : "/media/erogol/data_ssd/Data/models/ljspeech_models/" , // DATASET-RELATED: output path for all training outputs.
2018-12-17 15:37:39 +00:00
"num_loader_workers" : 8 , // number of training data loader processes. Don't set it too big. 4-8 are good values.
2019-01-16 12:07:03 +00:00
"num_val_loader_workers" : 4 , // number of evaluation data loader processes.
2019-02-12 09:03:55 +00:00
"phoneme_cache_path" : "ljspeech_us_phonemes" , // phoneme computation is slow, therefore, it caches results in the given folder.
2019-01-16 12:07:03 +00:00
"use_phonemes" : true , // use phonemes instead of raw characters. It is suggested for better pronounciation.
2019-03-06 12:09:21 +00:00
"phoneme_language" : "en-us" , // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
"text_cleaner" : "phoneme_cleaners"
2018-12-31 12:20:15 +00:00
}