mirror of https://github.com/coqui-ai/TTS.git
parameter name fix
parent
09b1a7b612
commit
bc51b81aae
|
@ -39,6 +39,7 @@
|
|||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // TO BE IMPLEMENTED -- memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
"attention_norm": "softmax", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
|
||||
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"eval_batch_size":16,
|
||||
|
|
|
@ -14,7 +14,7 @@ class Tacotron(nn.Module):
|
|||
r=5,
|
||||
padding_idx=None,
|
||||
memory_size=5,
|
||||
attn_windowing=False,
|
||||
attn_win=False,
|
||||
attn_norm="sigmoid"):
|
||||
super(Tacotron, self).__init__()
|
||||
self.r = r
|
||||
|
@ -23,7 +23,7 @@ class Tacotron(nn.Module):
|
|||
self.embedding = nn.Embedding(num_chars, 256, padding_idx=padding_idx)
|
||||
self.embedding.weight.data.normal_(0, 0.3)
|
||||
self.encoder = Encoder(256)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_windowing, attn_norm)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win, attn_norm)
|
||||
self.postnet = PostCBHG(mel_dim)
|
||||
self.last_linear = nn.Sequential(
|
||||
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
|
||||
|
|
2
train.py
2
train.py
|
@ -375,7 +375,7 @@ def main(args):
|
|||
init_distributed(args.rank, num_gpus, args.group_id,
|
||||
c.distributed["backend"], c.distributed["url"])
|
||||
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
|
||||
model = MyModel(num_chars=num_chars, r=c.r, attention_norm=c.attention_norm)
|
||||
model = MyModel(num_chars=num_chars, r=c.r, attn_norm=c.attention_norm)
|
||||
|
||||
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
|
||||
|
||||
|
|
Loading…
Reference in New Issue