TTS/server/synthesizer.py

66 lines
2.2 KiB
Python
Raw Normal View History

2018-06-05 12:15:48 +00:00
import io
import os
import librosa
import torch
2018-06-05 14:15:57 +00:00
import scipy
2018-06-05 12:15:48 +00:00
import numpy as np
2018-06-05 14:15:57 +00:00
import soundfile as sf
from utils.text import text_to_sequence
from utils.generic_utils import load_config
from utils.audio import AudioProcessor
from models.tacotron import Tacotron
2018-06-05 12:15:48 +00:00
from matplotlib import pylab as plt
class Synthesizer(object):
def load_model(self, model_path, model_name, model_config, use_cuda):
model_config = os.path.join(model_path, model_config)
2018-08-02 14:34:17 +00:00
self.model_file = os.path.join(model_path, model_name)
2018-06-05 12:15:48 +00:00
print(" > Loading model ...")
print(" | > model config: ", model_config)
print(" | > model file: ", self.model_file)
config = load_config(model_config)
self.config = config
self.use_cuda = use_cuda
self.ap = AudioProcessor(**config.audio)
self.model = Tacotron(config.embedding_size, self.ap.num_freq, self.ap.num_mels, config.r)
2018-06-05 12:15:48 +00:00
# load model state
if use_cuda:
cp = torch.load(self.model_file)
else:
2018-08-02 14:34:17 +00:00
cp = torch.load(
self.model_file, map_location=lambda storage, loc: storage)
2018-06-05 12:15:48 +00:00
# load the model
self.model.load_state_dict(cp['model'])
if use_cuda:
self.model.cuda()
2018-08-02 14:34:17 +00:00
self.model.eval()
2018-06-05 12:15:48 +00:00
def save_wav(self, wav, path):
# wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
self.ap.save_wav(wav, path)
2018-06-05 12:15:48 +00:00
def tts(self, text):
text_cleaner = [self.config.text_cleaner]
wavs = []
for sen in text.split('.'):
if len(sen) < 3:
continue
sen = sen.strip()
2018-08-02 14:34:17 +00:00
sen += '.'
2018-06-05 14:15:57 +00:00
print(sen)
2018-06-05 12:15:48 +00:00
sen = sen.strip()
seq = np.array(text_to_sequence(text, text_cleaner))
2018-08-02 14:34:17 +00:00
chars_var = torch.from_numpy(seq).unsqueeze(0).long()
2018-06-05 12:15:48 +00:00
if self.use_cuda:
chars_var = chars_var.cuda()
2018-08-02 14:34:17 +00:00
mel_out, linear_out, alignments, stop_tokens = self.model.forward(
chars_var)
2018-06-05 12:15:48 +00:00
linear_out = linear_out[0].data.cpu().numpy()
wav = self.ap.inv_spectrogram(linear_out.T)
out = io.BytesIO()
wavs.append(wav)
wavs.append(np.zeros(10000))
self.save_wav(wav, out)
return out