Shinobi/plugins/tensorflow-coral/detect_image.py

87 lines
2.9 KiB
Python

# Lint as: python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example using TF Lite to detect objects in a given image."""
import argparse
import time
import sys
from PIL import Image
from PIL import ImageDraw
from io import BytesIO, StringIO
import time
import base64
import json
from pycoral.adapters import common
from pycoral.adapters import detect
from pycoral.utils.dataset import read_label_file
from pycoral.utils.edgetpu import make_interpreter
import platform
def printInfo(text):
print(json.dumps({"type": "info", "data": text}))
def printError(text):
print(json.dumps({"type": "error", "data": text}))
def printData(array, time):
print(json.dumps({"type": "data", "data": array, "time": time}))
def main():
labels = read_label_file("models/coco_labels.txt")
interpreter = make_interpreter(
"models/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite")
interpreter.allocate_tensors()
threshold = 0.4
printInfo("ready")
while True:
line = sys.stdin.readline().rstrip("\n")
try:
#load image from shinobi stream
rawImage = BytesIO(base64.b64decode(line))
image = Image.open(rawImage)
#resize the image for object detection using built in coral code
#it will set it to 300x300 and provide a scale for object detection later
_, scale = common.set_resized_input(
interpreter, image.size, lambda size: image.resize(size, Image.ANTIALIAS))
start = time.perf_counter()
interpreter.invoke()
inference_time = time.perf_counter() - start
#passing the scale from above, this function creates the bounding boxes
#it takes the 300x300 image and divides the scale ratio for original coordinates
objs = detect.get_objects(interpreter, threshold, scale)
output = []
for obj in objs:
label = labels.get(obj.id, obj.id)
labelID = obj.id
score = obj.score
bbox = obj.bbox
output.append({"bbox": bbox, "class": label, "score": score})
#outputted data is based on original feed in image size
printData(output, (inference_time * 1000))
except Exception as e:
printError(str(e))
if __name__ == '__main__':
main()