# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example using TF Lite to detect objects in a given image.""" import argparse import time import sys from PIL import Image from PIL import ImageDraw from io import BytesIO, StringIO import time import base64 import json from pycoral.adapters import common from pycoral.adapters import detect from pycoral.utils.dataset import read_label_file from pycoral.utils.edgetpu import make_interpreter import platform def printInfo(text): print(json.dumps({"type": "info", "data": text})) def printError(text): print(json.dumps({"type": "error", "data": text})) def printData(array, time): print(json.dumps({"type": "data", "data": array, "time": time})) def main(): labels = read_label_file("models/coco_labels.txt") interpreter = make_interpreter( "models/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite") interpreter.allocate_tensors() threshold = 0.4 printInfo("ready") while True: line = sys.stdin.readline().rstrip("\n") try: #load image from shinobi stream rawImage = BytesIO(base64.b64decode(line)) image = Image.open(rawImage) #resize the image for object detection using built in coral code #it will set it to 300x300 and provide a scale for object detection later _, scale = common.set_resized_input( interpreter, image.size, lambda size: image.resize(size, Image.ANTIALIAS)) start = time.perf_counter() interpreter.invoke() inference_time = time.perf_counter() - start #passing the scale from above, this function creates the bounding boxes #it takes the 300x300 image and divides the scale ratio for original coordinates objs = detect.get_objects(interpreter, threshold, scale) output = [] for obj in objs: label = labels.get(obj.id, obj.id) labelID = obj.id score = obj.score bbox = obj.bbox output.append({"bbox": bbox, "class": label, "score": score}) #outputted data is based on original feed in image size printData(output, (inference_time * 1000)) except Exception as e: printError(str(e)) if __name__ == '__main__': main()