commit
88dc92e20a
|
@ -0,0 +1 @@
|
||||||
|
include precise/data/activate.wav
|
|
@ -80,8 +80,7 @@ def play_audio(filename: str):
|
||||||
|
|
||||||
def activate_notify():
|
def activate_notify():
|
||||||
audio = 'data/activate.wav'
|
audio = 'data/activate.wav'
|
||||||
audio = abspath(dirname(abspath(__file__)) + '/../' + audio)
|
audio = join(dirname(abspath(__file__)), audio)
|
||||||
|
|
||||||
play_audio(audio)
|
play_audio(audio)
|
||||||
|
|
||||||
|
|
||||||
|
|
3
setup.py
3
setup.py
|
@ -69,8 +69,9 @@ setup(
|
||||||
'precise-calc-threshold=precise.scripts.calc_threshold:main',
|
'precise-calc-threshold=precise.scripts.calc_threshold:main',
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
include_package_data=True,
|
||||||
install_requires=[
|
install_requires=[
|
||||||
'numpy',
|
'numpy==1.16',
|
||||||
'tensorflow>=1.13,<1.14', # Must be on piwheels
|
'tensorflow>=1.13,<1.14', # Must be on piwheels
|
||||||
'sonopy',
|
'sonopy',
|
||||||
'pyaudio',
|
'pyaudio',
|
||||||
|
|
|
@ -0,0 +1,10 @@
|
||||||
|
FROM python:3.7-slim
|
||||||
|
ENV TERM linux
|
||||||
|
ENV DEBIAN_FRONTEND noninteractive
|
||||||
|
RUN apt-get update && apt-get -y install git python3-scipy cython libhdf5-dev python3-h5py portaudio19-dev swig libpulse-dev libatlas-base-dev
|
||||||
|
ADD . mycroft-precise
|
||||||
|
WORKDIR mycroft-precise
|
||||||
|
RUN pip install .
|
||||||
|
RUN pip install pytest
|
||||||
|
ENV PYTHONPATH /mycroft-precise
|
||||||
|
ENTRYPOINT ["pytest"]
|
|
@ -0,0 +1,13 @@
|
||||||
|
# Copyright 2019 Mycroft AI Inc.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
|
@ -0,0 +1,13 @@
|
||||||
|
# Copyright 2019 Mycroft AI Inc.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
|
@ -35,8 +35,14 @@ class DummyAudioFolder:
|
||||||
return min + (max - min) * np.random.random() * pr.buffer_t
|
return min + (max - min) * np.random.random() * pr.buffer_t
|
||||||
|
|
||||||
def generate_samples(self, folder, name, value, duration):
|
def generate_samples(self, folder, name, value, duration):
|
||||||
|
"""Generate sample file.
|
||||||
|
|
||||||
|
The file is generated in the specified folder, with the specified name,
|
||||||
|
dummy value and duration.
|
||||||
|
"""
|
||||||
for i in range(self.count):
|
for i in range(self.count):
|
||||||
save_audio(join(folder, name.format(i)), np.array([value] * int(duration * pr.sample_rate)))
|
save_audio(join(folder, name.format(i)),
|
||||||
|
np.array([value] * int(duration * pr.sample_rate)))
|
||||||
|
|
||||||
def subdir(self, *parts):
|
def subdir(self, *parts):
|
||||||
folder = self.path(*parts)
|
folder = self.path(*parts)
|
||||||
|
|
|
@ -26,18 +26,27 @@ def read_content(filename):
|
||||||
|
|
||||||
|
|
||||||
def test_combined(train_folder, train_script):
|
def test_combined(train_folder, train_script):
|
||||||
|
"""Test a "normal" development cycle, train, evaluate and calc threshold.
|
||||||
|
"""
|
||||||
train_script.run()
|
train_script.run()
|
||||||
params_file = train_folder.model + '.params'
|
params_file = train_folder.model + '.params'
|
||||||
assert isfile(train_folder.model)
|
assert isfile(train_folder.model)
|
||||||
assert isfile(params_file)
|
assert isfile(params_file)
|
||||||
|
|
||||||
EvalScript.create(folder=train_folder.root, models=[train_folder.model]).run()
|
EvalScript.create(folder=train_folder.root,
|
||||||
|
models=[train_folder.model]).run()
|
||||||
|
|
||||||
|
# Ensure that the graph script generates a numpy savez file
|
||||||
out_file = train_folder.path('outputs.npz')
|
out_file = train_folder.path('outputs.npz')
|
||||||
graph_script = GraphScript.create(folder=train_folder.root, models=[train_folder.model], output_file=out_file)
|
graph_script = GraphScript.create(folder=train_folder.root,
|
||||||
|
models=[train_folder.model],
|
||||||
|
output_file=out_file)
|
||||||
graph_script.run()
|
graph_script.run()
|
||||||
assert isfile(out_file)
|
assert isfile(out_file)
|
||||||
|
|
||||||
|
# Esure the params are updated after threshold is calculated
|
||||||
params_before = read_content(params_file)
|
params_before = read_content(params_file)
|
||||||
CalcThresholdScript.create(folder=train_folder.root, model=train_folder.model, input_file=out_file).run()
|
CalcThresholdScript.create(folder=train_folder.root,
|
||||||
|
model=train_folder.model,
|
||||||
|
input_file=out_file).run()
|
||||||
assert params_before != read_content(params_file)
|
assert params_before != read_content(params_file)
|
||||||
|
|
|
@ -36,6 +36,10 @@ class FakeStdout:
|
||||||
|
|
||||||
|
|
||||||
def test_engine(train_folder, train_script):
|
def test_engine(train_folder, train_script):
|
||||||
|
"""
|
||||||
|
Test t hat the output format of the engina matches a decimal form in the
|
||||||
|
range 0.0 - 1.0.
|
||||||
|
"""
|
||||||
train_script.run()
|
train_script.run()
|
||||||
with open(glob.glob(join(train_folder.root, 'wake-word', '*.wav'))[0], 'rb') as f:
|
with open(glob.glob(join(train_folder.root, 'wake-word', '*.wav'))[0], 'rb') as f:
|
||||||
data = f.read()
|
data = f.read()
|
||||||
|
|
|
@ -22,15 +22,20 @@ from test.scripts.dummy_audio_folder import DummyAudioFolder
|
||||||
class DummyTrainFolder(DummyAudioFolder):
|
class DummyTrainFolder(DummyAudioFolder):
|
||||||
def __init__(self, count=10):
|
def __init__(self, count=10):
|
||||||
super().__init__(count)
|
super().__init__(count)
|
||||||
self.generate_samples(self.subdir('wake-word'), 'ww-{}.wav', 1.0, self.rand(0, 2 * pr.buffer_t))
|
self.generate_samples(self.subdir('wake-word'), 'ww-{}.wav', 1.0,
|
||||||
self.generate_samples(self.subdir('not-wake-word'), 'nww-{}.wav', 0.0, self.rand(0, 2 * pr.buffer_t))
|
self.rand(0, 2 * pr.buffer_t))
|
||||||
self.generate_samples(self.subdir('test', 'wake-word'), 'ww-{}.wav', 1.0, self.rand(0, 2 * pr.buffer_t))
|
self.generate_samples(self.subdir('not-wake-word'), 'nww-{}.wav', 0.0,
|
||||||
self.generate_samples(self.subdir('test', 'not-wake-word'), 'nww-{}.wav', 0.0, self.rand(0, 2 * pr.buffer_t))
|
self.rand(0, 2 * pr.buffer_t))
|
||||||
|
self.generate_samples(self.subdir('test', 'wake-word'), 'ww-{}.wav',
|
||||||
|
1.0, self.rand(0, 2 * pr.buffer_t))
|
||||||
|
self.generate_samples(self.subdir('test', 'not-wake-word'),
|
||||||
|
'nww-{}.wav', 0.0, self.rand(0, 2 * pr.buffer_t))
|
||||||
self.model = self.path('model.net')
|
self.model = self.path('model.net')
|
||||||
|
|
||||||
|
|
||||||
class TestTrain:
|
class TestTrain:
|
||||||
def test_run_basic(self):
|
def test_run_basic(self):
|
||||||
|
"""Run a training and check that a model is generated."""
|
||||||
folders = DummyTrainFolder(10)
|
folders = DummyTrainFolder(10)
|
||||||
script = TrainScript.create(model=folders.model, folder=folders.root)
|
script = TrainScript.create(model=folders.model, folder=folders.root)
|
||||||
script.run()
|
script.run()
|
||||||
|
|
Loading…
Reference in New Issue