Add docstrings and clean up test slightly
parent
a99d229b0c
commit
6345c50b41
|
@ -35,8 +35,14 @@ class DummyAudioFolder:
|
|||
return min + (max - min) * np.random.random() * pr.buffer_t
|
||||
|
||||
def generate_samples(self, folder, name, value, duration):
|
||||
"""Generate sample file.
|
||||
|
||||
The file is generated in the specified folder, with the specified name,
|
||||
dummy value and duration.
|
||||
"""
|
||||
for i in range(self.count):
|
||||
save_audio(join(folder, name.format(i)), np.array([value] * int(duration * pr.sample_rate)))
|
||||
save_audio(join(folder, name.format(i)),
|
||||
np.array([value] * int(duration * pr.sample_rate)))
|
||||
|
||||
def subdir(self, *parts):
|
||||
folder = self.path(*parts)
|
||||
|
|
|
@ -26,18 +26,27 @@ def read_content(filename):
|
|||
|
||||
|
||||
def test_combined(train_folder, train_script):
|
||||
"""Test a "normal" development cycle, train, evaluate and calc threshold.
|
||||
"""
|
||||
train_script.run()
|
||||
params_file = train_folder.model + '.params'
|
||||
assert isfile(train_folder.model)
|
||||
assert isfile(params_file)
|
||||
|
||||
EvalScript.create(folder=train_folder.root, models=[train_folder.model]).run()
|
||||
EvalScript.create(folder=train_folder.root,
|
||||
models=[train_folder.model]).run()
|
||||
|
||||
# Ensure that the graph script generates a numpy savez file
|
||||
out_file = train_folder.path('outputs.npz')
|
||||
graph_script = GraphScript.create(folder=train_folder.root, models=[train_folder.model], output_file=out_file)
|
||||
graph_script = GraphScript.create(folder=train_folder.root,
|
||||
models=[train_folder.model],
|
||||
output_file=out_file)
|
||||
graph_script.run()
|
||||
assert isfile(out_file)
|
||||
|
||||
# Esure the params are updated after threshold is calculated
|
||||
params_before = read_content(params_file)
|
||||
CalcThresholdScript.create(folder=train_folder.root, model=train_folder.model, input_file=out_file).run()
|
||||
CalcThresholdScript.create(folder=train_folder.root,
|
||||
model=train_folder.model,
|
||||
input_file=out_file).run()
|
||||
assert params_before != read_content(params_file)
|
||||
|
|
|
@ -36,6 +36,10 @@ class FakeStdout:
|
|||
|
||||
|
||||
def test_engine(train_folder, train_script):
|
||||
"""
|
||||
Test t hat the output format of the engina matches a decimal form in the
|
||||
range 0.0 - 1.0.
|
||||
"""
|
||||
train_script.run()
|
||||
with open(glob.glob(join(train_folder.root, 'wake-word', '*.wav'))[0], 'rb') as f:
|
||||
data = f.read()
|
||||
|
|
|
@ -22,15 +22,20 @@ from test.scripts.dummy_audio_folder import DummyAudioFolder
|
|||
class DummyTrainFolder(DummyAudioFolder):
|
||||
def __init__(self, count=10):
|
||||
super().__init__(count)
|
||||
self.generate_samples(self.subdir('wake-word'), 'ww-{}.wav', 1.0, self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('not-wake-word'), 'nww-{}.wav', 0.0, self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('test', 'wake-word'), 'ww-{}.wav', 1.0, self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('test', 'not-wake-word'), 'nww-{}.wav', 0.0, self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('wake-word'), 'ww-{}.wav', 1.0,
|
||||
self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('not-wake-word'), 'nww-{}.wav', 0.0,
|
||||
self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('test', 'wake-word'), 'ww-{}.wav',
|
||||
1.0, self.rand(0, 2 * pr.buffer_t))
|
||||
self.generate_samples(self.subdir('test', 'not-wake-word'),
|
||||
'nww-{}.wav', 0.0, self.rand(0, 2 * pr.buffer_t))
|
||||
self.model = self.path('model.net')
|
||||
|
||||
|
||||
class TestTrain:
|
||||
def test_run_basic(self):
|
||||
"""Run a training and check that a model is generated."""
|
||||
folders = DummyTrainFolder(10)
|
||||
script = TrainScript.create(model=folders.model, folder=folders.root)
|
||||
script.run()
|
||||
|
|
Loading…
Reference in New Issue