mycroft-precise/precise/scripts/train_incremental.py

171 lines
5.9 KiB
Python
Raw Normal View History

2018-02-09 00:43:03 +00:00
#!/usr/bin/env python3
# Copyright (c) 2017 Mycroft AI Inc.
from os import makedirs
2018-02-09 00:43:03 +00:00
from os.path import basename, splitext, isfile, join
from random import random
2018-02-15 20:54:08 +00:00
from typing import *
import numpy as np
from prettyparse import create_parser
2018-02-09 00:43:03 +00:00
from precise.model import create_model
from precise.network_runner import Listener, KerasRunner
from precise.params import inject_params
from precise.train_data import TrainData
2018-02-23 20:44:50 +00:00
from precise.util import load_audio, save_audio, glob_all
usage = '''
Train a model to inhibit activation by
marking false activations and retraining
:model str
Keras <NAME>.net file to train
:-e --epochs int 1
Number of epochs to train before continuing evaluation
:-ds --delay-samples int 10
Number of timesteps of false activations to save before re-training
:-c --chunk-size int 2048
Number of samples between testing the neural network
:-b --batch-size int 128
Batch size used for training
:-sb --save-best
Only save the model each epoch if its stats improve
:-mm --metric-monitor str loss
Metric used to determine when to save
:-em --extra-metrics
Add extra metrics during training
:-nv --no-validation
Disable accuracy and validation calculation
to improve speed during training
:-r --random-data-dir str data/random
Directories with properly encoded wav files of
random audio that should not cause an activation
...
'''
def chunk_audio(audio: np.ndarray, chunk_size: int) -> Generator[np.ndarray, None, None]:
2018-02-09 00:43:03 +00:00
for i in range(chunk_size, len(audio), chunk_size):
yield audio[i - chunk_size:i]
2018-02-15 20:54:08 +00:00
def load_trained_fns(model_name: str) -> list:
2018-02-09 00:43:03 +00:00
progress_file = model_name.replace('.net', '') + '.trained.txt'
if isfile(progress_file):
print('Starting from saved position in', progress_file)
with open(progress_file, 'rb') as f:
return f.read().decode('utf8', 'surrogatepass').split('\n')
return []
2018-02-15 20:54:08 +00:00
def save_trained_fns(trained_fns: list, model_name: str):
2018-02-09 00:43:03 +00:00
with open(model_name.replace('.net', '') + '.trained.txt', 'wb') as f:
f.write('\n'.join(trained_fns).encode('utf8', 'surrogatepass'))
class IncrementalTrainer:
def __init__(self, args):
self.args = args
self.trained_fns = load_trained_fns(args.model)
pr = inject_params(args.model)
self.audio_buffer = np.zeros(pr.buffer_samples, dtype=float)
from keras.callbacks import ModelCheckpoint
self.checkpoint = ModelCheckpoint(args.model, monitor=args.metric_monitor,
save_best_only=args.save_best)
data = TrainData.from_db(args.db_file, args.db_folder)
self.db_data = data.load(True, not args.no_validation)
2018-02-09 00:43:03 +00:00
if not isfile(args.model):
create_model(args.model, args.no_validation, args.extra_metrics).save(args.model)
2018-02-09 00:43:03 +00:00
self.listener = Listener(args.model, args.chunk_size, runner_cls=KerasRunner)
def retrain(self):
"""Train for a session, pulling in any new data from the filesystem"""
folder = TrainData.from_folder(self.args.data_dir)
train_data, test_data = folder.load(True, not self.args.no_validation)
2018-02-09 00:43:03 +00:00
train_data = TrainData.merge(train_data, self.db_data[0])
test_data = TrainData.merge(test_data, self.db_data[1])
print()
try:
self.listener.runner.model.fit(*train_data, self.args.batch_size, self.args.epochs,
validation_data=test_data, callbacks=[self.checkpoint])
finally:
self.listener.runner.model.save(self.args.model)
def train_on_audio(self, fn: str):
"""Run through a single audio file"""
save_test = random() > 0.8
2018-02-09 00:43:03 +00:00
samples_since_train = 0
audio = load_audio(fn)
num_chunks = len(audio) // self.args.chunk_size
self.listener.clear()
for i, chunk in enumerate(chunk_audio(audio, self.args.chunk_size)):
print('\r' + str(i * 100. / num_chunks) + '%', end='', flush=True)
audio_buffer = np.concatenate((self.audio_buffer[len(chunk):], chunk))
conf = self.listener.update(chunk)
if conf > 0.5:
samples_since_train += 1
name = splitext(basename(fn))[0] + '-' + str(i) + '.wav'
name = join(self.args.data_dir, 'test' if save_test else '', 'not-wake-word',
2018-02-09 00:43:03 +00:00
'generated', name)
save_audio(name, audio_buffer)
print()
print('Saved to:', name)
elif samples_since_train > 0:
samples_since_train = self.args.delay_samples
if not save_test and samples_since_train >= self.args.delay_samples and self.args.epochs > 0:
2018-02-09 00:43:03 +00:00
samples_since_train = 0
self.retrain()
def train_incremental(self):
"""
Begin reading through audio files, saving false
activations and retraining when necessary
"""
2018-02-23 20:44:50 +00:00
for fn in glob_all(self.args.random_data_dir, '*.wav'):
2018-02-09 00:43:03 +00:00
if fn in self.trained_fns:
print('Skipping ' + fn + '...')
continue
print('Starting file ' + fn + '...')
self.train_on_audio(fn)
print('\r100% ')
self.trained_fns.append(fn)
save_trained_fns(self.trained_fns, self.args.model)
def main():
args = TrainData.parse_args(create_parser(usage))
for i in (
join(args.data_dir, 'not-wake-word', 'generated'),
join(args.data_dir, 'test', 'not-wake-word', 'generated')
2018-02-09 00:43:03 +00:00
):
makedirs(i, exist_ok=True)
trainer = IncrementalTrainer(args)
try:
trainer.train_incremental()
except KeyboardInterrupt:
print()
if __name__ == '__main__':
main()