#!/usr/bin/env python3 # Copyright (c) 2017 Mycroft AI Inc. from os import makedirs from os.path import basename, splitext, isfile, join from random import random from typing import * import numpy as np from prettyparse import create_parser from precise.model import create_model from precise.network_runner import Listener, KerasRunner from precise.params import inject_params from precise.train_data import TrainData from precise.util import load_audio, save_audio, glob_all usage = ''' Train a model to inhibit activation by marking false activations and retraining :model str Keras .net file to train :-e --epochs int 1 Number of epochs to train before continuing evaluation :-ds --delay-samples int 10 Number of timesteps of false activations to save before re-training :-c --chunk-size int 2048 Number of samples between testing the neural network :-b --batch-size int 128 Batch size used for training :-sb --save-best Only save the model each epoch if its stats improve :-mm --metric-monitor str loss Metric used to determine when to save :-em --extra-metrics Add extra metrics during training :-nv --no-validation Disable accuracy and validation calculation to improve speed during training :-r --random-data-dir str data/random Directories with properly encoded wav files of random audio that should not cause an activation ... ''' def chunk_audio(audio: np.ndarray, chunk_size: int) -> Generator[np.ndarray, None, None]: for i in range(chunk_size, len(audio), chunk_size): yield audio[i - chunk_size:i] def load_trained_fns(model_name: str) -> list: progress_file = model_name.replace('.net', '') + '.trained.txt' if isfile(progress_file): print('Starting from saved position in', progress_file) with open(progress_file, 'rb') as f: return f.read().decode('utf8', 'surrogatepass').split('\n') return [] def save_trained_fns(trained_fns: list, model_name: str): with open(model_name.replace('.net', '') + '.trained.txt', 'wb') as f: f.write('\n'.join(trained_fns).encode('utf8', 'surrogatepass')) class IncrementalTrainer: def __init__(self, args): self.args = args self.trained_fns = load_trained_fns(args.model) pr = inject_params(args.model) self.audio_buffer = np.zeros(pr.buffer_samples, dtype=float) from keras.callbacks import ModelCheckpoint self.checkpoint = ModelCheckpoint(args.model, monitor=args.metric_monitor, save_best_only=args.save_best) data = TrainData.from_db(args.db_file, args.db_folder) self.db_data = data.load(True, not args.no_validation) if not isfile(args.model): create_model(args.model, args.no_validation, args.extra_metrics).save(args.model) self.listener = Listener(args.model, args.chunk_size, runner_cls=KerasRunner) def retrain(self): """Train for a session, pulling in any new data from the filesystem""" folder = TrainData.from_folder(self.args.data_dir) train_data, test_data = folder.load(True, not self.args.no_validation) train_data = TrainData.merge(train_data, self.db_data[0]) test_data = TrainData.merge(test_data, self.db_data[1]) print() try: self.listener.runner.model.fit(*train_data, self.args.batch_size, self.args.epochs, validation_data=test_data, callbacks=[self.checkpoint]) finally: self.listener.runner.model.save(self.args.model) def train_on_audio(self, fn: str): """Run through a single audio file""" save_test = random() > 0.8 samples_since_train = 0 audio = load_audio(fn) num_chunks = len(audio) // self.args.chunk_size self.listener.clear() for i, chunk in enumerate(chunk_audio(audio, self.args.chunk_size)): print('\r' + str(i * 100. / num_chunks) + '%', end='', flush=True) audio_buffer = np.concatenate((self.audio_buffer[len(chunk):], chunk)) conf = self.listener.update(chunk) if conf > 0.5: samples_since_train += 1 name = splitext(basename(fn))[0] + '-' + str(i) + '.wav' name = join(self.args.data_dir, 'test' if save_test else '', 'not-wake-word', 'generated', name) save_audio(name, audio_buffer) print() print('Saved to:', name) elif samples_since_train > 0: samples_since_train = self.args.delay_samples if not save_test and samples_since_train >= self.args.delay_samples and self.args.epochs > 0: samples_since_train = 0 self.retrain() def train_incremental(self): """ Begin reading through audio files, saving false activations and retraining when necessary """ for fn in glob_all(self.args.random_data_dir, '*.wav'): if fn in self.trained_fns: print('Skipping ' + fn + '...') continue print('Starting file ' + fn + '...') self.train_on_audio(fn) print('\r100% ') self.trained_fns.append(fn) save_trained_fns(self.trained_fns, self.args.model) def main(): args = TrainData.parse_args(create_parser(usage)) for i in ( join(args.data_dir, 'not-wake-word', 'generated'), join(args.data_dir, 'test', 'not-wake-word', 'generated') ): makedirs(i, exist_ok=True) trainer = IncrementalTrainer(args) try: trainer.train_incremental() except KeyboardInterrupt: print() if __name__ == '__main__': main()