Added several docker-based scripts that can be used to build the OSS binaries and Debian and CentOS packages in a clean, standardized environment. Supports Windows, OSX, and Linux on AMD64 as well as multiple chip architectures for linux including i386, arm5, arm6 and arm8. Will also package source code with all necessary dependencies, and run basic unit tests in the same environment.
All time ranges are combined with AND regardless of context and
regardless of whether it makes any logical sense.
That was the previous behavior and, unfortunately, a lot of people rely
on it.
A cold shard that suddenly receives a lot of writes could get a very
big cache that takes a long time to snapshot or causes the cache
max memory limit to be hit more quickly. This re-enables the compactions
if necessary during writes so we don't have to wait for the shard monitor
goroutine to re-enable them.
Compactions would create their own TSMReaders for simplicity. With
very high cardinality compactions, creating the reader and indirectIndex
can start to use a significant amount of memory.
This changes the compactions to use a reader that is already allocated
and managed by the FileStore.
These are already sorted during compaction, so switch to sorting lazily
to avoid the CPU and allocations. This would only occur when using if
using the writer directly.
The directIndex used by the TSMWriter maintained a map of series keys
to index entries. When the index is written to the TSM file, the keys
are sorted and then written out in order.
The reason for this is because directIndex used to be the only index
and it was optimized more for reading. The reading has been replaced
by the indirectIndex so the map of keys ends up wasting space.
During compactions, the series keys (and index entries) are already sorted
so this change uses the sorting to avoid the map and sort when writing the
index. This reduces allocations and CPU usage quite a bit for larger cardinality
TSM files.
This leaves the slower compactions that create full blocks to only
the full compaction. This helps reduce CPU usage and memory while shards
are hot, but increases disk usage (reduced compression) slightly.
Adds a new package prometheus for converting from remote reads and writes to Influx queries and points. Adds two new endpoints to the httpd handler to support prometheus remote read at /api/v1/prom/read and remote write at /api/v1/prom/write.
The only thing used from Prometheus is the storage/remote files that are generated from the remote.proto file. Copied that file into promtheus/remote package to avoid an extra dependency.
Deleting high cardinality series could take a very long time, cause
write timeouts as well as dead lock the process. This fixes these
issue to by changing the approach for cleaning up the indexes and
reducing lock contention.
The prior approach delete each series and updated every index (inmem)
during the delete. This was very slow and cause the index to be locked
while it items in a slice were removed one by one. This has been changed
to mark series as deleted and then rebuild the index asynchronously which
speeds up the process.
There was also a dead lock that could occur when deleing the field set.
Deleting the field set held a write lock and the function it invoked under
the lock could try to take a read lock on the field set. This would then
deadlock. This approach was also very slow and caused time out for writes.
It now uses faster approach that checks for the existing of the measurment
in the cache and filestore which does not take write locks.