This change delays Tag cloning until a new series is found, and will
only clone Tags acquired from `ParsePoints...` and not those referencing
the mmap-ed files (TSM) that are created on startup.
This leak seems to have been introduced in 8aa224b22d,
present in 1.1.0 and 1.1.1.
When points were parsed from HTTP payloads, their tags and fields
referred to subslices of the request body; if any tag set introduced a
new series, then those tags then were stored in the in-memory series
index objects, preventing the HTTP body from being garbage collected. If
there were no new series in the payload, then the request body would be
garbage collected as usual.
Now, we clone the tags before we store them in the index. This is an
imperfect fix because the Point still holds references to the original
tags, and the Point's field iterator also refers to the payload buffer.
However, the current write code path does not retain references to the
Point or its fields; and this change will likely be obsoleted when TSI
is introduced.
This change likely fixes#7827, #7810, #7778, and perhaps others.
This change adds some very basic name validation with the following
plain-english description: names must be non-zero sequence of printable
characters that do not contain slashes ('/' or '\') and are not equal to
either "." or "..".
The intent is that, since we currently just use database and retention
policy names directly as path elements, these rules will hopefully leave
us with names that should be at least close to valid directory names.
Ideally, we would restrict names even further or not use them as path
elements directly, but this should be a step towards the former without
restricting names "too much"
Fixes#7822
This change first ensures that databases and retention policies exist
before attempting to remove them from the Store. It also adds some
checks in the `DeleteDatabase` and `DeleteRetentionPolicy` to ensure
that maliciously named entries won't remove anything outside of the
configured data directory.
I ran into an issue where the cache snapshotting seemed to stop
completely causing the cache to fill up and never recover. I believe
this is due to the the Timer being reused incorrectly. Instead,
use a Ticker that will fire more regularly and not require the resetting
logic (which was wrong).
The memory stats as well as the size of the cache were not accurate.
There was also a problem where the cache size would be increased
optimisitically, but if the cache size limit was hit, it would not
be decreased. This would cause the cache size to grow without
bounds with every failed write.
The CacheKeyIterator (used for snapshot compactions), iterated over
each key and serially encoded the values for that key as the TSM
file is written. With many series, this can be slow and will only
use 1 CPU core even if more are available.
This changes it so that the key space is split amongst a number of
goroutines that start encoding all keys in parallel to improve
throughput.