docs-v2/content/shared/v3-core-plugins/_index.md

18 KiB

Extend InfluxDB 3 with custom Python code that you can trigger on write, on a schedule, or on demand. The Processing Engine lets you automate workflows, transform data, and create API endpoints directly within your {{% product-name %}}.

What is the Processing Engine?

The Processing Engine is an embedded Python virtual machine that runs inside your {{% product-name %}} database. You configure Processing Engine triggers to run your Python plugin code in response to:

  • Data writes - Process and transform data as it enters the database
  • Scheduled events - Run code at specific intervals or times
  • HTTP requests - Create custom API endpoints that execute your code

You can use the Processing Engine in-memory cache to store and manage state between plugin executions, allowing you to build stateful applications directly in your database.

This guide shows you how to set up the Processing Engine, create your first plugin, and configure triggers that execute your code when specific events occur.

Before you begin

Ensure you have:

  • A working InfluxDB 3 Core instance
  • Access to command line
  • Python installed if you're writing your own plugin
  • Basic knowledge of the InfluxDB CLI

Once you have all the prerequisites in place, follow these steps to implement the Processing Engine for your data automation needs.

  1. Set up the Processing Engine
  2. Add a Processing Engine plugin
  3. Create a trigger to run a plugin
  4. Advanced trigger configuration

Activate the Processing Engine

To enable the Processing Engine, start your {{% product-name %}} server with the --plugin-dir flag to specify where your plugin files are stored.

{{% code-placeholders "NODE_ID|OBJECT_STORE_TYPE|PLUGIN_DIR" %}}

influxdb3 serve \
  --NODE_ID \
  --object-store OBJECT_STORE_TYPE \
  --plugin-dir PLUGIN_DIR

{{% /code-placeholders %}}

In the example above, replace the following:

  • {{% code-placeholder-key %}}NODE_ID{{% /code-placeholder-key %}}: Unique identifier for your instance
  • {{% code-placeholder-key %}}OBJECT_STORE_TYPE{{% /code-placeholder-key %}}: Type of object store (for example, file or s3)
  • {{% code-placeholder-key %}}PLUGIN_DIR{{% /code-placeholder-key %}}: Absolute path to the directory where plugin files are stored. Store all plugin files in this directory or its subdirectories.

Configure distributed environments

If you're running multiple {{% product-name %}} instances (distributed deployment):

  1. Decide where plugins should run
    • Data processing plugins, such as WAL plugins, run on ingester nodes
    • HTTP-triggered plugins run on nodes handling API requests
    • Scheduled plugins can run on any configured node
  2. Enable plugins on selected instances
  3. Maintain identical plugin files across all instances where plugins run
    • Use shared storage or file synchronization tools to keep plugins consistent

[!Note]

Provide plugins to nodes that run them

Configure your plugin directory on the same system as the nodes that run the triggers and plugins.

Add a Processing Engine plugin

A plugin is a Python file that contains a specific function signature that corresponds to a type of trigger (a trigger spec).

You have two main options for adding plugins to your InfluxDB instance:

Use example plugins

The InfluxData team maintains a repository of example plugins you can use immediately:

  1. Browse available plugins: Visit the influxdb3_plugins repository to find examples for:

    • Data transformation: Process and transform incoming data
    • Alerting: Send notifications based on data thresholds
    • Aggregation: Calculate statistics on time series data
    • Integration: Connect to external services and APIs
    • System monitoring: Track resource usage and health metrics
  2. Copy a plugin or retrieve it directly from the repository:

{{< code-tabs-wrapper >}}

{{% code-tabs %}} Copy locally Fetch via gh: {{% /code-tabs %}}

{{% code-tab-content %}}

# Clone the repository
git clone https://github.com/influxdata/influxdb3_plugins.git
   
# Copy a plugin to your configured plugin directory
cp influxdb3_plugins/examples/schedule/system_metrics/system_metrics.py /path/to/plugins/

{{% /code-tab-content %}}

{{% code-tab-content %}}

# You can use plugins directly from GitHub without downloading them first by using the `gh:` prefix in the plugin filename:
influxdb3 create trigger \
    --trigger-spec "every:1m" \
    --plugin-filename "gh:examples/schedule/system_metrics/system_metrics.py" \
    --database my_database \
    system_metrics

{{% /code-tab-content %}}

{{< /code-tabs-wrapper >}}

Plugins have various functions such as:

  • Receive plugin-specific arguments (such as written data, call time, or an HTTP request)
  • Can receive keyword arguments (as args) from trigger arguments
  • Can access the influxdb3_local shared API for writing, querying, and managing state

Create a custom plugin

When you need custom functionality, you can create your own plugin by doing the following:

Choose your plugin type

Choose your plugin type

First, determine which type of plugin you need based on your automation goals:

Plugin Type Best For Trigger Type
Data write Processing data as it arrives table: or all_tables
Scheduled Running code at specific times every: or cron:
HTTP request Creating API endpoints path:

Create your plugin file

Create your plugin file

  • Create a .py file in your plugins directory
  • Add the appropriate function signature based on your chosen plugin type
  • Implement your processing logic inside the function
Create a data write plugin
Option A: Create a data write plugin

Data write plugins process incoming data as it's written to the database. They're ideal for:

  • Data transformation and enrichment
  • Alerting on incoming values
  • Creating derived metrics
def process_writes(influxdb3_local, table_batches, args=None):
    # Process data as it's written to the database
    for table_batch in table_batches:
        table_name = table_batch["table_name"]
        rows = table_batch["rows"]
        
        # Log information about the write
        influxdb3_local.info(f"Processing {len(rows)} rows from {table_name}")
        
        # Write derived data back to the database
        line = LineBuilder("processed_data")
        line.tag("source_table", table_name)
        line.int64_field("row_count", len(rows))
        influxdb3_local.write(line)
##### Create a scheduled plugin

##### Option B: Create a scheduled plugin

Scheduled plugins run at specific intervals or times. They can be used for:

- Periodic data aggregation
- Report generation
- System health checks

```python
def process_scheduled_call(influxdb3_local, call_time, args=None):
    # Run code on a schedule
    
    # Query recent data
    results = influxdb3_local.query("SELECT * FROM metrics WHERE time > now() - INTERVAL '1 hour'")
    
    # Process the results
    if results:
        influxdb3_local.info(f"Found {len(results)} recent metrics")
    else:
        influxdb3_local.warn("No recent metrics found")
##### Create an HTTP request plugin

##### Option C: Create an HTTP request plugin

HTTP request plugins respond to API calls. They can be used for:

- Creating custom API endpoints
- Web hooks for external integrations
- User interfaces for data interaction

```python
def process_request(influxdb3_local, query_parameters, request_headers, request_body, args=None):
    # Handle HTTP requests to a custom endpoint
    
    # Log the request parameters
    influxdb3_local.info(f"Received request with parameters: {query_parameters}")
    
    # Process the request body
    if request_body:
        import json
        data = json.loads(request_body)
        influxdb3_local.info(f"Request data: {data}")
    
    # Return a response (automatically converted to JSON)
    return {"status": "success", "message": "Request processed"}

After adding your plugin:

After adding your plugin:

A trigger connects your plugin to a specific event.

A trigger connects your plugin to a specific database event. The plugin function signature in your plugin file determines which trigger specification. You can choose for configuring and activating your plugin. After setting up your plugin, configure a trigger to run it for a specific event.

Understand trigger types

Plugin Type Trigger Specification When Plugin Runs
Data write table:<TABLE_NAME> or all_tables When data is written to tables
Scheduled every:<DURATION> or cron:<EXPRESSION> At specified time intervals
HTTP request path:<ENDPOINT_PATH> When HTTP requests are received

Create a trigger

Use the influxdb3 create trigger command with the appropriate trigger specification:

{{% code-placeholders "SPECIFICATION|PLUGIN_FILE|DATABASE_NAME|TRIGGER_NAME" %}}

influxdb3 create trigger \
  --trigger-spec SPECIFICATION \
  --plugin-filename PLUGIN_FILE \
  --database DATABASE_NAME \
  TRIGGER_NAME

{{% /code-placeholders %}}

In the example above, replace the following:

  • {{% code-placeholder-key %}}SPECIFICATION{{% /code-placeholder-key %}}: Trigger specification
  • {{% code-placeholder-key %}}PLUGIN_FILE{{% /code-placeholder-key %}}: Plugin filename relative to your configured plugin directory
  • {{% code-placeholder-key %}}DATABASE_NAME{{% /code-placeholder-key %}}: Name of the database
  • {{% code-placeholder-key %}}TRIGGER_NAME{{% /code-placeholder-key %}}: Name of the new trigger

[!Note] When specifying a local plugin file, the --plugin-filename parameter is relative to the --plugin-dir configured for the server. You don't need to provide an absolute path.

Choose a trigger specification

For data write events

# Trigger on writes to a specific table
# The plugin file must be in your configured plugin directory
influxdb3 create trigger \
  --trigger-spec "table:sensor_data" \
  --plugin-filename "process_sensors.py" \
  --database my_database \
  sensor_processor

# Trigger on writes to all tables
influxdb3 create trigger \
  --trigger-spec "all_tables" \
  --plugin-filename "process_all_data.py" \
  --database my_database \
  all_data_processor

The trigger runs when the database flushes ingested data for the specified tables to the Write-Ahead Log (WAL) in the Object store (default is every second).

The plugin receives the written data and table information.

For scheduled events

# Run every 5 minutes
influxdb3 create trigger \
  --trigger-spec "every:5m" \
  --plugin-filename "hourly_check.py" \
  --database my_database \
  regular_check

# Run on a cron schedule (8am daily)
influxdb3 create trigger \
  --trigger-spec "cron:0 8 * * *" \
  --plugin-filename "daily_report.py" \
  --database my_database \
  daily_report

The plugin receives the scheduled call time.

For HTTP requests

# Create an endpoint at /api/v3/engine/webhook
influxdb3 create trigger \
  --trigger-spec "request:webhook" \
  --plugin-filename "webhook_handler.py" \
  --database my_database \
  webhook_processor

Access your endpoint available at /api/v3/engine/<ENDPOINT_PATH>. To run the plugin, send a GET or POST request to the endpoint--for example:

curl http://{{% influxdb/host %}}/api/v3/engine/webhook

The plugin receives the HTTP request object with methods, headers, and body.

Pass arguments to plugins

Use trigger arguments to pass configuration from a trigger to the plugin it runs. You can use this for:

  • Threshold values for monitoring
  • Connection properties for external services
  • Configuration settings for plugin behavior
influxdb3 create trigger \
  --trigger-spec "every:1h" \
  --plugin-filename "threshold_check.py" \
  --trigger-arguments threshold=90,notify_email=admin@example.com \
  --database my_database \
  threshold_monitor

The arguments are passed to the plugin as a Dict[str, str] where the key is the argument name and the value is the argument value:

def process_scheduled_call(influxdb3_local, call_time, args=None):
    if args and "threshold" in args:
        threshold = float(args["threshold"])
        email = args.get("notify_email", "default@example.com")
        
        # Use the arguments in your logic
        influxdb3_local.info(f"Checking threshold {threshold}, will notify {email}")

Control trigger execution

By default, triggers run synchronously—each instance waits for previous instances to complete before executing.

To allow multiple instances of the same trigger to run simultaneously, configure triggers to run asynchronously:

# Allow multiple trigger instances to run simultaneously
influxdb3 create trigger \
  --trigger-spec "table:metrics" \
  --plugin-filename "heavy_process.py" \
  --run-asynchronous \
  --database my_database \
  async_processor

Configure error handling for a trigger

To configure error handling behavior for a trigger, use the --error-behavior <ERROR_BEHAVIOR> CLI option with one of the following values:

  • log (default): Log all plugin errors to stdout and the system.processing_engine_logs system table.
  • retry: Attempt to run the plugin again immediately after an error.
  • disable: Automatically disable the plugin when an error occurs (can be re-enabled later via CLI).
# Automatically retry on error
influxdb3 create trigger \
  --trigger-spec "table:important_data" \
  --plugin-filename "critical_process.py" \
  --error-behavior retry \
  --database my_database \
  critical_processor

# Disable the trigger on error
influxdb3 create trigger \
  --trigger-spec "request:webhook" \
  --plugin-filename "webhook_handler.py" \
  --error-behavior disable \
  --database my_database \
  auto_disable_processor

Advanced trigger configuration

After creating basic triggers, you can enhance your plugins with these advanced features:

Access community plugins from GitHub

Skip downloading plugins by referencing them directly from GitHub:

# Create a trigger using a plugin from GitHub
influxdb3 create trigger \
  --trigger-spec "every:1m" \
  --plugin-filename "gh:examples/schedule/system_metrics/system_metrics.py" \
  --database my_database \
  system_metrics

This approach:

  • Ensures you're using the latest version
  • Simplifies updates and maintenance
  • Reduces local storage requirements

Configure your triggers

Pass configuration arguments

Provide runtine configuration to your plugins:

# Pass threshold and email settings to a plugin
Provide runtime configuration to your plugins:
  --trigger-spec "every:1h" \
  --plugin-filename "threshold_check.py" \
  --trigger-arguments threshold=90,notify_email=admin@example.com \
  --database my_database \
  threshold_monitor

Your plugin accesses these values through the args parameter:

def process_scheduled_call(influxdb3_local, call_time, args=None):
    if args and "threshold" in args:
        threshold = float(args["threshold"])
        email = args.get("notify_email", "default@example.com")
        
        # Use the arguments in your logic
        influxdb3_local.info(f"Checking threshold {threshold}, will notify {email}")

Set execution mode

Choose between synchronous (default) or asynchronous execution:

# Allow multiple trigger instances to run simultaneously
influxdb3 create trigger \
  --trigger-spec "table:metrics" \
  --plugin-filename "heavy_process.py" \
  --run-asynchronous \
  --database my_database \
  async_processor

Use asynchronous execution when:

  • Processing might take longer than the trigger interval
  • Multiple events need to be handled simultaneously
  • Performance is more important than sequential execution

Configure error handling

Control how your trigger responds to errors:

# Automatically retry on error
influxdb3 create trigger \
  --trigger-spec "table:important_data" \
  --plugin-filename "critical_process.py" \
  --error-behavior retry \
  --database my_database \
  critical_processor

Install Python dependencies

If your plugin needs additional Python packages, use the influxdb3 install command:

# Install a package directly
influxdb3 install package pandas
# With Docker
docker exec -it CONTAINER_NAME influxdb3 install package pandas

This creates a Python virtual environment in your plugins directory with the specified packages installed.

{{% show-in "enterprise" %}}

Connect Grafana to your InfluxDB instance

When configuring Grafana to connect to an InfluxDB 3 Enterprise instance:

  • URL: Use a querier URL or any node that serves queries

Example URL format: https://querier.your-influxdb.com:8086 {{% /show-in %}}