8.7 KiB
title | description | weight | menu | influxdb/cloud-dedicated/tags | related | list_code_example | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Use Python to query data with InfluxQL | Use Python and the `influxdb3-python` library to query data stored in InfluxDB with InfluxQL. | 401 |
|
|
|
```py from influxdb_client_3 import InfluxDBClient3 # Instantiate an InfluxDB client client = InfluxDBClient3( host='cluster-id.influxdb.io', token='DATABASE_TOKEN', database='DATABASE_NAME' ) # Execute the query and return an Arrow table table = client.query( query="SELECT * FROM home", language="influxql" ) # Return query results as a markdown table print(table.to_pandas().to_markdown()) ``` |
Use the influxdb3-python
client library to query data stored in InfluxDB with InfluxQL.
The influxdb3-client
uses InfluxDB v3's Flight RPC protocol to query data from InfluxDB and return
results in Apache Arrow format.
{{% warn %}}
InfluxQL feature support
InfluxQL is being rearchitected to work with the InfluxDB IOx storage engine. This process is ongoing and some InfluxQL features are still being implemented. For information about the current implementation status of InfluxQL features, see InfluxQL feature support. {{% /warn %}}
Get started using Python to query InfluxDB
This guide follows the recommended practice of using Python virtual environments. If you don't want to use virtual environments and you have Python installed, continue to Query InfluxDB.
Create a Python virtual environment
Python virtual environments keep the Python interpreter and dependencies for your project self-contained and isolated from other projects.
To install Python and create a virtual environment, choose one of the following options:
-
Python venv: The
venv
module comes standard in Python as of version 3.5. -
Anaconda® Distribution: A Python/R data science distribution that provides Python and the conda package and environment manager.
{{< tabs-wrapper >}} {{% tabs "small" %}} venv Anaconda {{% /tabs %}} {{% tab-content %}}
Install Python
-
Follow the Python installation instructions to install a recent version of the Python programming language for your system.
-
Check that you can run
python
andpip
commands.pip
is a package manager included in most Python distributions.In your terminal, enter the following commands:
python --version
pip --version
Depending on your system, you may need to use version-specific commands--for example.
python3 --version
pip3 --version
If neither
pip
norpip<PYTHON_VERSION>
works, follow one of the Pypa.io Pip installation methods for your system.
Create a project virtual environment
-
Create a directory for your Python project and change to the new directory--for example:
mkdir ./PROJECT_DIRECTORY && cd $_
-
Use the Python
venv
module to create a virtual environment--for example:python -m venv envs/virtualenv-1
venv
creates the new virtual environment directory in your project. -
To activate the new virtual environment in your terminal, run the
source
command and pass the file path of the virtual environmentactivate
script:source envs/VIRTUAL_ENVIRONMENT_NAME/bin/activate
For example:
source envs/virtualenv-1/bin/activate
{{% /tab-content %}} {{% tab-content %}}
Install Anaconda
-
Follow the Anaconda installation instructions for your system.
-
Check that you can run the
conda
command:conda
-
Use
conda
to create a virtual environment--for example:conda create --prefix envs/virtualenv-1
conda
creates a virtual environment in a directory named./envs/virtualenv-1
. -
To activate the new virtual environment, use the
conda activate
command and pass the directory path of the virtual environment:conda activate envs/VIRTUAL_ENVIRONMENT_NAME
For example:
conda activate ./envs/virtualenv-1
{{% /tab-content %}} {{< /tabs-wrapper >}}
When a virtual environment is activated, the name displays at the beginning of your terminal command line--for example:
{{% code-callout "(virtualenv-1)"%}}
(virtualenv-1) $ PROJECT_DIRECTORY
{{% /code-callout %}}
Query InfluxDB
Install the influxdb3-python library
The influxdb_client_3
module provides a simple and convenient way to interact
with {{< cloud-name >}} using Python. This module supports both writing data to
InfluxDB and querying data using SQL or InfluxQL queries.
Installing inflxudb3-python
also installs the
pyarrow
library that you'll
use for working with Arrow data returned from queries.
In your terminal, use pip
to install influxdb3-python
:
pip install influxdb3-python
With influxdb3-python
and pyarrow
installed, you're ready to query and
analyze data stored in an InfluxDB database.
Create an InfluxDB client
The following example shows how to use Python with influxdb3-python
and to instantiate a client configured for an InfluxDB database.
In your editor, copy and paste the following sample code to a new file--for
example, query-example.py
:
{{% code-placeholders "DATABASE_(NAME|TOKEN)" %}}
# query-example.py
from influxdb_client_3 import InfluxDBClient3
# Instantiate an InfluxDBClient3 client configured for your database
client = InfluxDBClient3(
host='cluster-id.influxdb.io',
token='DATABASE_TOKEN',
database='DATABASE_NAME'
)
{{% /code-placeholders %}}
Replace the following configuration values:
- {{% code-placeholder-key %}}
DATABASE_TOKEN
{{% /code-placeholder-key %}}: Your InfluxDB token with read permissions on the databases you want to query. - {{% code-placeholder-key %}}
DATABASE_NAME
{{% /code-placeholder-key %}}: The name of your InfluxDB database.
Execute a query
To execute an InfluxQL query, call the client's query(query,language)
method
and specify the following arguments:
- query: InfluxQL query string to execute.
- language:
influxql
Syntax
query(query: str, language: str)
Example
{{% code-placeholders "DATABASE_(NAME|TOKEN)" %}}
# query-example.py
from influxdb_client_3 import InfluxDBClient3
client = InfluxDBClient3(
host='cluster-id.influxdb.io',
token='DATABASE_TOKEN',
database='DATABASE_NAME'
)
# Execute the query and return an Arrow table
table = client.query(
query="SELECT * FROM home",
language="influxql"
)
# Return query results as a markdown table
print(table.to_pandas().to_markdown())
{{% /code-placeholders %}}
Next, learn how to use Python tools to work with time series data: