3.0 KiB
title | description | aliases | menu | weight | v2.0/tags | related | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tripleExponentialDerivative() function | The `tripleExponentialDerivative()` function calculates a triple exponential derivative (TRIX) of input tables using `n` points. |
|
|
402 |
|
|
The tripleExponentialDerivative()
function calculates a triple exponential
derivative (TRIX) of
input tables using n
points.
Function type: Transformation
tripleExponentialDerivative(n: 5)
Triple exponential derivative, commonly referred to as “TRIX,” is a momentum indicator and oscillator.
A triple exponential derivative uses the natural logarithm (log) of input data to
calculate a triple exponential moving average over the period of time.
The calculation prevents cycles shorter than the defined period from being considered by the indicator.
tripleExponentialDerivative()
uses the time between n
points to define the period.
Triple exponential derivative oscillates around a zero line. A positive momentum oscillator value indicates an overbought market; a negative value indicates an oversold market. A positive momentum indicator value indicates increasing momentum; a negative value indicates decreasing momentum.
Triple exponential moving average rules
- A triple exponential derivative is defined as:
TRIX[i] = ((EMA3[i] / EMA3[i - 1]) - 1) * 100
:EMA_3 = EMA(EMA(EMA(data)))
- If there are not enough values to calculate a triple exponential derivative,
the output
_value
isNaN
; all other columns are the same as the last record of the input table. - The function behaves the same way as the
exponentialMovingAverage()
function:- The function does not include
null
values in the calculation. - The function acts only on the
_value
column.
- The function does not include
Parameters
n
The number of points to use in the calculation.
Data type: Integer
Examples
Calculate a five point triple exponential derivative
from(bucket: "example-bucket"):
|> range(start: -12h)
|> tripleExponentialDerivative(n: 5)