docs-v2/content/flux/v0/stdlib/csv/from.md

5.4 KiB

title description menu weight flux/v0/tags
csv.from() function `csv.from()` retrieves data from a comma separated value (CSV) data source and returns a stream of tables.
flux_v0_ref
name parent identifier
csv.from csv csv/from
101
csv
inputs

csv.from() retrieves data from a comma separated value (CSV) data source and returns a stream of tables.

Function type signature
(?csv: string, ?file: string, ?mode: string) => stream[A] where A: Record

{{% caption %}}For more information, see Function type signatures.{{% /caption %}}

Parameters

csv

CSV data.

Supports anonotated CSV or raw CSV. Use mode to specify the parsing mode.

file

File path of the CSV file to query.

The path can be absolute or relative. If relative, it is relative to the working directory of the fluxd process. The CSV file must exist in the same file system running the fluxd process.

mode

is the CSV parsing mode. Default is annotations.

Available annotation modes

  • annotations: Use CSV notations to determine column data types.
  • raw: Parse all columns as strings and use the first row as the header row and all subsequent rows as data.

Examples

Query annotated CSV data from file

import "csv"

csv.from(file: "path/to/data-file.csv")

Query raw data from CSV file

import "csv"

csv.from(file: "/path/to/data-file.csv", mode: "raw")

Query an annotated CSV string

import "csv"

csvData =
    "
#datatype,string,long,dateTime:RFC3339,dateTime:RFC3339,dateTime:RFC3339,string,string,double
#group,false,false,false,false,false,true,true,false
#default,,,,,,,,
,result,table,_start,_stop,_time,region,host,_value
,mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
,mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:51:00Z,east,A,65.15
,mean,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
,mean,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:51:20Z,east,B,18.67
,mean,2,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
,mean,2,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:51:40Z,east,C,82.16
"

csv.from(csv: csvData)

{{< expand-wrapper >}} {{% expand "View example output" %}}

Output data

_start _stop _time *region *host _value
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:50:00Z east A 15.43
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:51:00Z east A 65.15
_start _stop _time *region *host _value
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:50:20Z east B 59.25
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:51:20Z east B 18.67
_start _stop _time *region *host _value
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:50:40Z east C 52.62
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:51:40Z east C 82.16

{{% /expand %}} {{< /expand-wrapper >}}

Query a raw CSV string

import "csv"

csvData =
    "
_start,_stop,_time,region,host,_value
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
"

csv.from(csv: csvData, mode: "raw")

{{< expand-wrapper >}} {{% expand "View example output" %}}

Output data

_start _stop _time region host _value
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:50:00Z east A 15.43
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:50:20Z east B 59.25
2018-05-08T20:50:00Z 2018-05-08T20:51:00Z 2018-05-08T20:50:40Z east C 52.62

{{% /expand %}} {{< /expand-wrapper >}}