5.4 KiB
title | description | menu | weight | flux/v0/tags | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
csv.from() function | `csv.from()` retrieves data from a comma separated value (CSV) data source and returns a stream of tables. |
|
101 |
|
csv.from()
retrieves data from a comma separated value (CSV) data source and
returns a stream of tables.
Function type signature
(?csv: string, ?file: string, ?mode: string) => stream[A] where A: Record
{{% caption %}}For more information, see Function type signatures.{{% /caption %}}
Parameters
csv
CSV data.
Supports anonotated CSV or raw CSV. Use mode
to specify the parsing mode.
file
File path of the CSV file to query.
The path can be absolute or relative.
If relative, it is relative to the working directory of the fluxd
process.
The CSV file must exist in the same file system running the fluxd
process.
mode
is the CSV parsing mode. Default is annotations
.
Available annotation modes
- annotations: Use CSV notations to determine column data types.
- raw: Parse all columns as strings and use the first row as the header row and all subsequent rows as data.
Examples
- Query annotated CSV data from file
- Query raw data from CSV file
- Query an annotated CSV string
- Query a raw CSV string
Query annotated CSV data from file
import "csv"
csv.from(file: "path/to/data-file.csv")
Query raw data from CSV file
import "csv"
csv.from(file: "/path/to/data-file.csv", mode: "raw")
Query an annotated CSV string
import "csv"
csvData =
"
#datatype,string,long,dateTime:RFC3339,dateTime:RFC3339,dateTime:RFC3339,string,string,double
#group,false,false,false,false,false,true,true,false
#default,,,,,,,,
,result,table,_start,_stop,_time,region,host,_value
,mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
,mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:51:00Z,east,A,65.15
,mean,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
,mean,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:51:20Z,east,B,18.67
,mean,2,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
,mean,2,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:51:40Z,east,C,82.16
"
csv.from(csv: csvData)
{{< expand-wrapper >}} {{% expand "View example output" %}}
Output data
_start | _stop | _time | *region | *host | _value |
---|---|---|---|---|---|
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:50:00Z | east | A | 15.43 |
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:51:00Z | east | A | 65.15 |
_start | _stop | _time | *region | *host | _value |
---|---|---|---|---|---|
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:50:20Z | east | B | 59.25 |
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:51:20Z | east | B | 18.67 |
_start | _stop | _time | *region | *host | _value |
---|---|---|---|---|---|
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:50:40Z | east | C | 52.62 |
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:51:40Z | east | C | 82.16 |
{{% /expand %}} {{< /expand-wrapper >}}
Query a raw CSV string
import "csv"
csvData =
"
_start,_stop,_time,region,host,_value
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
"
csv.from(csv: csvData, mode: "raw")
{{< expand-wrapper >}} {{% expand "View example output" %}}
Output data
_start | _stop | _time | region | host | _value |
---|---|---|---|---|---|
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:50:00Z | east | A | 15.43 |
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:50:20Z | east | B | 59.25 |
2018-05-08T20:50:00Z | 2018-05-08T20:51:00Z | 2018-05-08T20:50:40Z | east | C | 52.62 |
{{% /expand %}} {{< /expand-wrapper >}}