8.7 KiB
title | description | menu | weight | related | list_code_example | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Perform an inner join | Use [`join.inner()`](/flux/v0/stdlib/join/inner/) to perform an inner join of two streams of data. Inner joins drop any rows from both input streams that do not have a matching row in the other stream. |
|
101 |
|
```js import "join" left = from(bucket: "example-bucket-1") |> //... right = from(bucket: "example-bucket-2") |> //... join.inner( left: left, right: right, on: (l, r) => l.column == r.column, as: (l, r) => ({l with name: r.name, location: r.location}), ) ``` |
Use join.inner()
to perform an inner join of two streams of data.
Inner joins drop any rows from both input streams that do not have a matching
row in the other stream.
{{< svg svg="static/svgs/join-diagram.svg" class="inner" >}}
{{< expand-wrapper >}} {{% expand "View table illustration of an inner join" %}} {{< flex >}} {{% flex-content "third" %}}
left
r1 | ● | ● |
r2 | ● | ● |
{{% /flex-content %}} | ||
{{% flex-content "third" %}} |
right
r1 | ▲ | ▲ |
r3 | ▲ | ▲ |
r4 | ▲ | ▲ |
{{% /flex-content %}} | ||
{{% flex-content "third" %}} |
Inner join result
r1 | ● | ● | ▲ | ▲ |
{{% /flex-content %}} | ||||
{{< /flex >}} | ||||
{{% /expand %}} | ||||
{{< /expand-wrapper >}} |
Use join.inner to join your data
-
Import the
join
package. -
Define the left and right data streams to join:
- Each stream must have one or more columns with common values. Column labels do not need to match, but column values do.
- Each stream should have identical group keys.
For more information, see join data requirements.
-
Use
join.inner()
to join the two streams together. Provide the following required parameters:left
: Stream of data representing the left side of the join.right
: Stream of data representing the right side of the join.on
: Join predicate. For example:(l, r) => l.column == r.column
.as
: Join output function that returns a record with values from each input stream. For example:(l, r) => ({l with column1: r.column1, column2: r.column2})
.
The following example uses a filtered selection from the
machineProduction sample data set
as the left data stream and an ad-hoc table created with array.from()
as the right data stream.
{{% note %}}
Example data grouping
The example below ungroups the left stream to match the grouping of the right stream.
After the two streams are joined together, the joined data is grouped by stationID
.
{{% /note %}}
import "array"
import "influxdata/influxdb/sample"
import "join"
left =
sample.data(set: "machineProduction")
|> filter(fn: (r) => r.stationID == "g1" or r.stationID == "g2" or r.stationID == "g3")
|> filter(fn: (r) => r._field == "oil_temp")
|> limit(n: 5)
right =
array.from(
rows: [
{station: "g1", opType: "auto", last_maintained: 2021-07-15T00:00:00Z},
{station: "g2", opType: "manned", last_maintained: 2021-07-02T00:00:00Z},
],
)
join.inner(
left: left |> group(),
right: right,
on: (l, r) => l.stationID == r.station,
as: (l, r) => ({l with opType: r.opType, maintained: r.last_maintained}),
)
|> group(columns: ["stationID"])
{{< expand-wrapper >}} {{% expand "View example input and output data" %}}
{{% note %}}
_start
and _stop
columns have been omitted from example input and output.
{{% /note %}}
Input
left
_time | _measurement | stationID | _field | _value |
---|---|---|---|---|
2021-08-01T00:00:00Z | machinery | g1 | oil_temp | 39.1 |
2021-08-01T00:00:11.51Z | machinery | g1 | oil_temp | 40.3 |
2021-08-01T00:00:19.53Z | machinery | g1 | oil_temp | 40.6 |
2021-08-01T00:00:25.1Z | machinery | g1 | oil_temp | 40.72 |
2021-08-01T00:00:36.88Z | machinery | g1 | oil_temp | 40.8 |
_time | _measurement | stationID | _field | _value |
---|---|---|---|---|
2021-08-01T00:00:00Z | machinery | g2 | oil_temp | 40.6 |
2021-08-01T00:00:27.93Z | machinery | g2 | oil_temp | 40.6 |
2021-08-01T00:00:54.96Z | machinery | g2 | oil_temp | 40.6 |
2021-08-01T00:01:17.27Z | machinery | g2 | oil_temp | 40.6 |
2021-08-01T00:01:41.84Z | machinery | g2 | oil_temp | 40.6 |
_time | _measurement | stationID | _field | _value |
---|---|---|---|---|
2021-08-01T00:00:00Z | machinery | g3 | oil_temp | 41.4 |
2021-08-01T00:00:14.46Z | machinery | g3 | oil_temp | 41.36 |
2021-08-01T00:00:25.29Z | machinery | g3 | oil_temp | 41.4 |
2021-08-01T00:00:38.77Z | machinery | g3 | oil_temp | 41.4 |
2021-08-01T00:00:51.2Z | machinery | g3 | oil_temp | 41.4 |
right
station | opType | last_maintained |
---|---|---|
g1 | auto | 2021-07-15T00:00:00Z |
g2 | manned | 2021-07-02T00:00:00Z |
Output
_time | _measurement | stationID | _field | _value | opType | maintained |
---|---|---|---|---|---|---|
2021-08-01T00:00:00Z | machinery | g1 | oil_temp | 39.1 | auto | 2021-07-15T00:00:00Z |
2021-08-01T00:00:11.51Z | machinery | g1 | oil_temp | 40.3 | auto | 2021-07-15T00:00:00Z |
2021-08-01T00:00:19.53Z | machinery | g1 | oil_temp | 40.6 | auto | 2021-07-15T00:00:00Z |
2021-08-01T00:00:25.1Z | machinery | g1 | oil_temp | 40.72 | auto | 2021-07-15T00:00:00Z |
2021-08-01T00:00:36.88Z | machinery | g1 | oil_temp | 40.8 | auto | 2021-07-15T00:00:00Z |
_time | _measurement | stationID | _field | _value | opType | maintained |
---|---|---|---|---|---|---|
2021-08-01T00:00:00Z | machinery | g2 | oil_temp | 40.6 | manned | 2021-07-02T00:00:00Z |
2021-08-01T00:00:27.93Z | machinery | g2 | oil_temp | 40.6 | manned | 2021-07-02T00:00:00Z |
2021-08-01T00:00:54.96Z | machinery | g2 | oil_temp | 40.6 | manned | 2021-07-02T00:00:00Z |
2021-08-01T00:01:17.27Z | machinery | g2 | oil_temp | 40.6 | manned | 2021-07-02T00:00:00Z |
2021-08-01T00:01:41.84Z | machinery | g2 | oil_temp | 40.6 | manned | 2021-07-02T00:00:00Z |
Things to note about the join output
- Because the right stream does not have a row with the
g3
station tag, the joined output drops all rows with theg3
stationID tag from the left stream.join.inner()
drops any rows that do not have a matching row in the other data stream.
{{% /expand %}} {{< /expand-wrapper >}}