docs-v2/content/flux/v0/join-data/inner.md

8.7 KiB

title description menu weight related list_code_example
Perform an inner join Use [`join.inner()`](/flux/v0/stdlib/join/inner/) to perform an inner join of two streams of data. Inner joins drop any rows from both input streams that do not have a matching row in the other stream.
flux_v0
name parent
Inner join Join data
101
/flux/v0/join-data/troubleshoot-joins/
/flux/v0/stdlib/join/
/flux/v0/stdlib/join/inner/
```js import "join" left = from(bucket: "example-bucket-1") |> //... right = from(bucket: "example-bucket-2") |> //... join.inner( left: left, right: right, on: (l, r) => l.column == r.column, as: (l, r) => ({l with name: r.name, location: r.location}), ) ```

Use join.inner() to perform an inner join of two streams of data. Inner joins drop any rows from both input streams that do not have a matching row in the other stream.

{{< svg svg="static/svgs/join-diagram.svg" class="inner" >}}

{{< expand-wrapper >}} {{% expand "View table illustration of an inner join" %}} {{< flex >}} {{% flex-content "third" %}}

left

r1
r2
{{% /flex-content %}}
{{% flex-content "third" %}}

right

r1
r3
r4
{{% /flex-content %}}
{{% flex-content "third" %}}

Inner join result

r1
{{% /flex-content %}}
{{< /flex >}}
{{% /expand %}}
{{< /expand-wrapper >}}

Use join.inner to join your data

  1. Import the join package.

  2. Define the left and right data streams to join:

    • Each stream must have one or more columns with common values. Column labels do not need to match, but column values do.
    • Each stream should have identical group keys.

    For more information, see join data requirements.

  3. Use join.inner() to join the two streams together. Provide the following required parameters:

    • left: Stream of data representing the left side of the join.
    • right: Stream of data representing the right side of the join.
    • on: Join predicate. For example: (l, r) => l.column == r.column.
    • as: Join output function that returns a record with values from each input stream. For example: (l, r) => ({l with column1: r.column1, column2: r.column2}).

The following example uses a filtered selection from the machineProduction sample data set as the left data stream and an ad-hoc table created with array.from() as the right data stream.

{{% note %}}

Example data grouping

The example below ungroups the left stream to match the grouping of the right stream. After the two streams are joined together, the joined data is grouped by stationID. {{% /note %}}

import "array"
import "influxdata/influxdb/sample"
import "join"

left =
    sample.data(set: "machineProduction")
        |> filter(fn: (r) => r.stationID == "g1" or r.stationID == "g2" or r.stationID == "g3")
        |> filter(fn: (r) => r._field == "oil_temp")
        |> limit(n: 5)

right =
    array.from(
        rows: [
            {station: "g1", opType: "auto", last_maintained: 2021-07-15T00:00:00Z},
            {station: "g2", opType: "manned", last_maintained: 2021-07-02T00:00:00Z},
        ],
    )

join.inner(
    left: left |> group(),
    right: right,
    on: (l, r) => l.stationID == r.station,
    as: (l, r) => ({l with opType: r.opType, maintained: r.last_maintained}),
)
    |> group(columns: ["stationID"])

{{< expand-wrapper >}} {{% expand "View example input and output data" %}}

{{% note %}} _start and _stop columns have been omitted from example input and output. {{% /note %}}

Input

left

_time _measurement stationID _field _value
2021-08-01T00:00:00Z machinery g1 oil_temp 39.1
2021-08-01T00:00:11.51Z machinery g1 oil_temp 40.3
2021-08-01T00:00:19.53Z machinery g1 oil_temp 40.6
2021-08-01T00:00:25.1Z machinery g1 oil_temp 40.72
2021-08-01T00:00:36.88Z machinery g1 oil_temp 40.8
_time _measurement stationID _field _value
2021-08-01T00:00:00Z machinery g2 oil_temp 40.6
2021-08-01T00:00:27.93Z machinery g2 oil_temp 40.6
2021-08-01T00:00:54.96Z machinery g2 oil_temp 40.6
2021-08-01T00:01:17.27Z machinery g2 oil_temp 40.6
2021-08-01T00:01:41.84Z machinery g2 oil_temp 40.6
_time _measurement stationID _field _value
2021-08-01T00:00:00Z machinery g3 oil_temp 41.4
2021-08-01T00:00:14.46Z machinery g3 oil_temp 41.36
2021-08-01T00:00:25.29Z machinery g3 oil_temp 41.4
2021-08-01T00:00:38.77Z machinery g3 oil_temp 41.4
2021-08-01T00:00:51.2Z machinery g3 oil_temp 41.4

right

station opType last_maintained
g1 auto 2021-07-15T00:00:00Z
g2 manned 2021-07-02T00:00:00Z

Output

_time _measurement stationID _field _value opType maintained
2021-08-01T00:00:00Z machinery g1 oil_temp 39.1 auto 2021-07-15T00:00:00Z
2021-08-01T00:00:11.51Z machinery g1 oil_temp 40.3 auto 2021-07-15T00:00:00Z
2021-08-01T00:00:19.53Z machinery g1 oil_temp 40.6 auto 2021-07-15T00:00:00Z
2021-08-01T00:00:25.1Z machinery g1 oil_temp 40.72 auto 2021-07-15T00:00:00Z
2021-08-01T00:00:36.88Z machinery g1 oil_temp 40.8 auto 2021-07-15T00:00:00Z
_time _measurement stationID _field _value opType maintained
2021-08-01T00:00:00Z machinery g2 oil_temp 40.6 manned 2021-07-02T00:00:00Z
2021-08-01T00:00:27.93Z machinery g2 oil_temp 40.6 manned 2021-07-02T00:00:00Z
2021-08-01T00:00:54.96Z machinery g2 oil_temp 40.6 manned 2021-07-02T00:00:00Z
2021-08-01T00:01:17.27Z machinery g2 oil_temp 40.6 manned 2021-07-02T00:00:00Z
2021-08-01T00:01:41.84Z machinery g2 oil_temp 40.6 manned 2021-07-02T00:00:00Z

Things to note about the join output

  • Because the right stream does not have a row with the g3 station tag, the joined output drops all rows with the g3 stationID tag from the left stream. join.inner() drops any rows that do not have a matching row in the other data stream.

{{% /expand %}} {{< /expand-wrapper >}}