docs-v2/content/shared/influxdb3-plugins/plugins-library/official/prophet-forecasting.md

234 lines
9.3 KiB
Markdown

The Prophet Forecasting Plugin enables time series forecasting for data in InfluxDB 3 using Facebook's Prophet library.
Generate predictions for future data points based on historical patterns, including seasonality, trends, and custom events.
Supports both scheduled batch forecasting and on-demand HTTP-triggered forecasts with model persistence and validation capabilities.
## Configuration
### Scheduled trigger parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `measurement` | string | required | Source measurement containing historical data |
| `field` | string | required | Field name to forecast |
| `window` | string | required | Historical data window. Format: `<number><unit>` (for example, `"30d"`) |
| `forecast_horizont` | string | required | Forecast duration. Format: `<number><unit>` (for example, `"2d"`) |
| `tag_values` | string | required | Dot-separated tag filters (for example, `"region:us-west.device:sensor1"`) |
| `target_measurement` | string | required | Destination measurement for forecast results |
| `model_mode` | string | required | Operation mode: "train" or "predict" |
| `unique_suffix` | string | required | Unique model identifier for versioning |
### HTTP trigger parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `measurement` | string | required | Source measurement containing historical data |
| `field` | string | required | Field name to forecast |
| `forecast_horizont` | string | required | Forecast duration. Format: `<number><unit>` (for example, `"7d"`) |
| `tag_values` | object | required | Tag filters as JSON object (for example, {"region":"us-west"}) |
| `target_measurement` | string | required | Destination measurement for forecast results |
| `unique_suffix` | string | required | Unique model identifier for versioning |
| `start_time` | string | required | Historical window start (ISO 8601 format) |
| `end_time` | string | required | Historical window end (ISO 8601 format) |
### Advanced parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `seasonality_mode` | string | "additive" | Prophet seasonality mode: "additive" or "multiplicative" |
| `changepoint_prior_scale` | number | 0.05 | Flexibility of trend changepoints |
| `changepoints` | string/array | none | Changepoint dates (ISO format) |
| `holiday_date_list` | string/array | none | Custom holiday dates (ISO format) |
| `holiday_names` | string/array | none | Holiday names corresponding to dates |
| `holiday_country_names` | string/array | none | Country codes for built-in holidays |
| `inferred_freq` | string | auto | Manual frequency specification (for example, `"1D"`, `"1H"`) |
| `validation_window` | string | "0s" | Validation period duration |
| `msre_threshold` | number | infinity | Maximum acceptable Mean Squared Relative Error |
| `target_database` | string | current | Database for forecast storage |
| `save_mode` | string | "false" | Whether to save/load models (HTTP only) |
### Notification parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `is_sending_alert` | string | "false" | Enable alerts on validation failure |
| `notification_text` | string | template | Custom alert message template |
| `senders` | string | none | Dot-separated notification channels |
| `notification_path` | string | "notify" | Notification endpoint path |
| `influxdb3_auth_token` | string | env var | Authentication token |
| `config_file_path` | string | none | TOML config file path relative to PLUGIN_DIR |
## Installation
### Install dependencies
Install required Python packages:
```bash
influxdb3 install package pandas
influxdb3 install package numpy
influxdb3 install package requests
influxdb3 install package prophet
```
### Create scheduled trigger
Create a trigger for periodic forecasting:
```bash
influxdb3 create trigger \
--database mydb \
--plugin-filename prophet_forecasting.py \
--trigger-spec "every:1d" \
--trigger-arguments "measurement=temperature,field=value,window=30d,forecast_horizont=2d,tag_values=region:us-west.device:sensor1,target_measurement=temperature_forecast,model_mode=train,unique_suffix=20250619_v1" \
prophet_forecast_trigger
```
### Create HTTP trigger
Create a trigger for on-demand forecasting:
```bash
influxdb3 create trigger \
--database mydb \
--plugin-filename prophet_forecasting.py \
--trigger-spec "request:forecast" \
prophet_forecast_http_trigger
```
### Enable triggers
```bash
influxdb3 enable trigger --database mydb prophet_forecast_trigger
influxdb3 enable trigger --database mydb prophet_forecast_http_trigger
```
## Examples
### Scheduled forecasting
Example HTTP request for on-demand forecasting:
```bash
curl -X POST http://localhost:8181/api/v3/engine/forecast \
-H "Authorization: Bearer YOUR_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"measurement": "temperature",
"field": "value",
"forecast_horizont": "7d",
"tag_values": {"region":"us-west","device":"sensor1"},
"target_measurement": "temperature_forecast",
"unique_suffix": "model_v1_20250722",
"start_time": "2025-05-20T00:00:00Z",
"end_time": "2025-06-19T00:00:00Z",
"seasonality_mode": "additive",
"changepoint_prior_scale": 0.05,
"validation_window": "3d",
"msre_threshold": 0.05
}'
```
### Advanced forecasting with holidays
```bash
curl -X POST http://localhost:8181/api/v3/engine/forecast \
-H "Authorization: Bearer YOUR_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"measurement": "sales",
"field": "revenue",
"forecast_horizont": "30d",
"tag_values": {"store":"main_branch"},
"target_measurement": "revenue_forecast",
"unique_suffix": "retail_model_v2",
"start_time": "2024-01-01T00:00:00Z",
"end_time": "2025-06-01T00:00:00Z",
"holiday_country_names": ["US"],
"holiday_date_list": ["2025-07-04"],
"holiday_names": ["Independence Day"],
"changepoints": ["2025-01-01", "2025-03-01"],
"inferred_freq": "1D"
}'
```
## Features
- **Dual trigger modes**: Support for both scheduled batch forecasting and on-demand HTTP requests
- **Model persistence**: Save and reuse trained models for consistent predictions
- **Forecast validation**: Built-in accuracy assessment using Mean Squared Relative Error (MSRE)
- **Holiday support**: Built-in holiday calendars and custom holiday configuration
- **Advanced seasonality**: Configurable seasonality modes and changepoint detection
- **Notification integration**: Alert delivery for validation failures via multiple channels
- **Flexible time intervals**: Support for seconds, minutes, hours, days, weeks, months, quarters, and years
## Output data structure
Forecast results are written to the target measurement with the following structure:
### Tags
- `model_version`: Model identifier from unique_suffix parameter
- Additional tags from original measurement query filters
### Fields
- `forecast`: Predicted value (yhat from Prophet model)
- `yhat_lower`: Lower bound of confidence interval
- `yhat_upper`: Upper bound of confidence interval
- `run_time`: Forecast execution timestamp (ISO 8601 format)
### Timestamp
- `time`: Forecast timestamp in nanoseconds
## Troubleshooting
### Common issues
**Model training failures**
- Ensure sufficient historical data points for the specified window
- Verify data contains required time column and forecast field
- Check for data gaps that might affect frequency inference
- Set `inferred_freq` manually if automatic detection fails
**Validation failures**
- Review MSRE threshold settings - values too low may cause frequent failures
- Ensure validation window provides sufficient data for comparison
- Check that validation data aligns temporally with forecast period
**HTTP trigger issues**
- Verify JSON request body format matches expected schema
- Check authentication tokens and database permissions
- Ensure start_time and end_time are in valid ISO 8601 format with timezone
**Model persistence problems**
- Verify plugin directory permissions for model storage
- Check disk space availability in plugin directory
- Ensure unique_suffix values don't conflict between different model versions
### Model storage
- **Location**: Models stored in `prophet_models/` directory within plugin directory
- **Naming**: Files named `prophet_model_{unique_suffix}.json`
- **Versioning**: Use descriptive unique_suffix values for model management
### Time format support
Supported time units for window, forecast_horizont, and validation_window:
- `s` (seconds), `min` (minutes), `h` (hours)
- `d` (days), `w` (weeks)
- `m` (months ≈30.42 days), `q` (quarters ≈91.25 days), `y` (years = 365 days)
### Validation process
When validation_window is set:
1. Training data: `current_time - window` to `current_time - validation_window`
2. Validation data: `current_time - validation_window` to `current_time`
3. MSRE calculation: `mean((actual - predicted)² / actual²)`
4. Threshold comparison and optional alert dispatch
## Report an issue
For plugin issues, see the Plugins repository [issues page](https://github.com/influxdata/influxdb3_plugins/issues).
## Find support for {{% product-name %}}
The [InfluxDB Discord server](https://discord.gg/9zaNCW2PRT) is the best place to find support for {{% product-name %}}.
For other InfluxDB versions, see the [Support and feedback](#bug-reports-and-feedback) options.